

LA-UR-17-23637

Approved for public release; distribution is unlimited.

Title: Release Report for Building Debris for TA-21 Sewage Treatment Facility

Author(s): Whicker, Jeffrey Jay

Gillis, Jessica Ruedig, Elizabeth

Intended for: Report

Environmental Programs

Issued: 2017-05-03

MARSAME Release Report for TA-21 Buildings 227 (superstructure), 229, and 387 (November 2015)

Prepared by:		Date:	
	Jeff Whicker/Jessica Gillis, ENV-ES, Environmental	Health Physics	
Approved by:		Date:	
	Mark Thacker, PM-8, UI PM FOD and D&D		

Summary

ENV-ES finds that the materials associated with TA-21 Buildings 227 (superstructure only), and 229 (see Figure 1) meet the criteria for unrestricted release to the public for recycle or as sanitary/commercial waste. The interior and exterior of the metal shed, building 387, passed the release criteria collectively; however, results from the roof of the structure were above reference background measurements. Waste management should be consulted for waste disposition options for the roofing metal. These findings are consistent with the requirements of DOE Order 458.1 "Radiation Protection of the Public and the Environment" and LANL Policy 412 "Environmental Radiation Protection." Sampling and data analysis, as described in this report, were sufficient to meet measurement objectives under the Multi-Agency Radiation Survey and Assessment of Materials and Equipment (MARSAME) manual (2009).

Introduction

The TA-21 sewage treatment Facility (STF) processed sewage for buildings in TA-21. The STF is no longer needed and is scheduled for demolition. Initial characterization surveys for Buildings 227, 229, 387, and associated sumps were completed in May 2015 and the final MARSAME release survey was completed in October 2015. Based on the results from the characterization and the release survey, ENV-ES found that the superstructure could be segregated from below grade structure for evaluation to be disposed as either uncontaminated industrial waste or recycle (concrete and metal). Given the higher potential for contamination, a more thorough survey of the below grade structure, water, and sediment would be required using MARSAME protocol prior to any releases to industrial landfills or for recycle. For all materials, waste management requirements need to be met.

Figure 1 Arial view of TA 21 Buildings 227, 229, and 387.

MARSAME Survey Description

Data quality objectives for transfer of items into the public domain are described in ENV-ES-TPP-001, R0 (2015). These buildings had inadequate process knowledge available to confirm a decision of "non-impacted" under MARSAME guidance. However, due to expected near-background levels of radiological contamination, this buildings were classified as Class 3. Using this approach, the buildings were separated into statistical decision units. Characterization surveys were conducted in May 2015, and the data quality and survey completeness were compared to MARSAME requirements. A final release survey plan was developed and approved by DOE in October 2015 (Attachment 1). Additional measurement were made in building 227, and all results are provided in this report (Attachment 2).

To ensure adequacy of survey coverage, ENV-ES uses the statistical software Visual Sample Plan (VSP) (Version 7, 2015). This software incorporates MARSAME requirements to generate a map of planned sampling locations to provide sufficient and representative data for a decision based on the estimated standard deviation of radiological measurements in the survey unit. Fundamental assumptions for this survey plan included the following:

- The data was not assumed to be normally distributed
- The null hypothesis (H₀) in the IFB case is that the radionuclide concentration in the survey unit is IFB. A Type I error (incorrectly rejecting the null hypothesis) means "failing" the survey unit or calling the material contaminated when in fact the material is IFB. Type I error was set at 5%.
- The alternative hypothesis (H_a) in the IFB case is that the radionuclide concentration in the survey unit is elevated above (distinguishable from) background. A Type II error (incorrectly failing to reject the null hypothesis) means "passing" the survey unit or calling the material IFB when in fact it contains elevated radionuclide concentration above background. Type II error was set at 10%.

Survey Quality Objectives

The number and placement of sampling locations in the characterization survey was compared to MARSAME requirements for final release. The statistical inputs used for this assessment and the sampling plans are presented in Appendix 1. In all cases, the combination of characterization and final release sampling provided an adequate number of data points and spatial distribution to make a statistically-based release decision.

Measurement Quality Objectives

The items included in this report were classified as Class 3 (minimal potential for contamination) consistent with MARSAME. Sampling and analysis protocol for these items was consistent with LANL policy and procedures (LANL P412, TPP 001, RP-1-DP-043). Direct measurements were made using a SHP380AB probe coupled with an Eberline E600 instrument. NUCON smears were used to collect removable samples and were counted using a Berthold 2010/143. This assessment confirms that the measurement quality objectives were met for the disposition of the materials.

Potential disposition pathways for this project included:

- 1) Release of metal for recycle using a release criterion of indistinguishable from background.
- 2) Release of concrete for recycle using a release criterion of < Table 10.2 level in P412.
- 3) Release of construction and demolition debris (all other material) for disposal at commercial/municipal landfills using a release criterion of indistinguishable from background.
- 4) Low Level Waste disposal for any material that is not indistinguishable from background.

The objectives of the measurements were to confirm, within the stated statistical confidence limits, that:

- 1) Measurements of total and removable surface radioactivity are below Table 10-2 values in LANL Policy 412 (P412), which are preapproved authorized limits for release for recycle; and
- 2) Potential residual radioactive contamination is below background levels (i.e. sample distribution is statistically indistinguishable from background distribution).

All data met the Measurement Quality Objectives (MQO). Specifically:

- 1) Appropriate instrumentation and techniques were used for the measurements and the expected radionuclides;
- 2) Scanning surveys (10% coverage for MARSAME Class 3) were used to search for hot spots;
- 3) Instruments were calibrated, response checked and background measurements were within expected ranges; and
- 4) The minimum detectable concentrations of the measurements were calculated to be below the surface contamination values in Table 10-2 of P412.

Data Analysis

Naturally occurring radioactive material in building materials is not removable, so the results for *removable* alpha and beta counts were compared to the instrument minimum detectable activity (MDA).

For *direct* alpha and beta counts, results were compared to expected background counts on the surfaces of similar, uncontaminated building materials (as tabulated in Whicker et al 2015-Attachment 3 this report). ProUCL Version 5.0 was used to calculate 95% Upper Confidence Limits (UCLs) for the mean of the sample data. In some cases, some of the results were higher than the background UCL decision level. In these cases, a statistical Wilcoxon Rank Sum test was used to compare the survey distribution with the background distribution (per MARSAME Section 6.6.2).

Results

Raw data for the surveys are provided in Attachments 1 and 2. Data summaries for buildings are provided in Tables 1-3. Each data value was compared with the appropriate release criteria. For example, recycled concrete was evaluated against Table 10-2 limits in P412. Metal for recycle and building debris slated for disposal at commercial landfills were evaluated against the Indistinguishable from Background (IFB) criteria.

Table 1. Results for Building 227 interior and exterior.

Building 227 interior

Interior Alpha

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	0.5	Mean	25
Standard Error	0.097837	Standard Error	2.990271
Median	0	Median	23
Standard Deviation	0.7	Standard Deviation	20
Sample Variance	0.497749	Sample Variance	384.4939
Minimum	0	Minimum	0
Maximum	2.7	Maximum	79
Count	52	Count	43
Confidence Level(95.0%)	0.196416	Confidence Level(95.0%)	6.034611
UCL Estimate	0.686801	UCL Estimate	31.52298

Interior Beta

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	1.3	Mean	72
Standard Error	0.245571	Standard Error	19.1947
Median	0.1	Median	0
Standard Deviation	1.8	Standard Deviation	126
Sample Variance	3.135879	Sample Variance	15842.76
Minimum	0	Minimum	0
Maximum	6.5	Maximum	483
Count	52	Count	43
Confidence Level(95.0%)	0.493005	Confidence Level(95.0%)	38.73646
UCL Estimate	1.794928	UCL Estimate	111.1086

Building 227 exterior

Exterior Alpha

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	0.7	Mean	39
Standard Error	0.184546	Standard Error	9.706374
Median	0	Median	27.5
Standard Deviation	0.9	Standard Deviation	48
Sample Variance	0.817373	Sample Variance	2261.129
Minimum	0	Minimum	0
Maximum	2.7	Maximum	164
Count	24	Count	24
Confidence Level(95.0%)	0.381762	Confidence Level(95.0%)	20.07916

Exterior Beta

Exterior Beta			
Removable		Direct	
(dpm/100cm²)		(dpm/100cm²)	
Mean	0.8	Mean	96
Standard Error	0.306392	Standard Error	34.54343
Median	0	Median	0
Mode	0	Mode	0
Standard Deviation	1.5	Standard Deviation	169
Sample Variance	2.253025	Sample Variance	28637.97
Minimum	0	Minimum	0
Maximum	5.1	Maximum	531
Count	24	Count	24
Confidence		Confidence	
Level(95.0%)	0.63382	Level(95.0%)	71.45854

Conclusions from data:

Building 227- interior:

- No removable contamination. All results were <MDA
- All direct measurements for metal and materials for landfill disposal were IFB
- All direct measurements on concrete were < Table 10.2 preauthorized limits

Building 227- exterior:

- No removable contamination. All results were <MDA
- All direct measurements for metal and materials for landfill disposal were IFB
- All direct measurements on concrete were < Table 10.2 preauthorized limits

Conclusion: Building materials from Building 227 are candidates for public release for the defined disposition pathway.

Table 2. Results for building 229 interior

Building 229 interior

Interior ALPHA			
Removable			_
(dpm/100cm²)		Direct (dpm/100cm²)	
Mean	0.5	Mean	9
Standard Error	0.148337	Standard Error	1.957634
Median	0	Median	7
Standard Deviation	0.8	Standard Deviation	10
Sample Variance	0.594103	Sample Variance	103.4729
Minimum	0	Minimum	0
Maximum	2.6	Maximum	40
Count	27	Count	27
Confidence		Confidence	
Level(95.0%)	0.304911	Level(95.0%)	4.023974
Interior Beta			
Removable			
(dpm/100cm²)		Direct (dpm/100cm²)	
Mean	1.0	Mean	90
Standard Error	0.333235	Standard Error	32.69693
Median	0	Median	0
Standard Deviation	1.7	Standard Deviation	170
Sample Variance	2.998234	Sample Variance	28865.41
Minimum	0	Minimum	0
Maximum	6.9	Maximum	538
Count	27	Count	27
Confidence Level(95.0%)	0.684975	Confidence Level(95.0%)	67.2095

Building 229 exterior

Exterior Alpha

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
(upm/100cm)		Direct (upiny 100cm)	
Mean	0.9	Mean	74.4
Standard Error	0.216392	Standard Error	10.44523
Median	1.1	Median	73
Mode	0	Mode	73
Standard Deviation	0.8	Standard Deviation	40.5
Sample Variance	0.702381	Sample Variance	1636.543
Minimum	0	Minimum	18
Maximum	2.7	Maximum	154
Count	15	Count	15
Confidence Level(95.0%)	0.464114	Confidence Level(95.0%)	22.40279

Exterior Beta

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	1.5	Mean	4.1
Standard Error	0.659326	Standard Error	4.133333
Median	0.1	Median	0
Mode	0	Mode	0
Standard Deviation	2.6	Standard Deviation	16.0
Sample Variance	6.520667	Sample Variance	256.2667
Minimum	0	Minimum	0
Maximum	8.4	Maximum	62
Count	15	Count	15
Confidence Level(95.0%)	1.414114	Confidence Level(95.0%)	8.865118

Conclusions from data:

Building 229: interior:

- No removable contamination. All results were <MDA
- All direct measurements for metal and materials for landfill disposal were IFB
- All direct measurements on concrete were < Table 10.2 preauthorized limits

Building 229: exterior:

- No removable contamination. All results were <MDA
- All direct measurements for metal and materials for landfill disposal were IFB
- All direct measurements on concrete were < Table 10.2 preauthorized limits

Conclusion: Building materials from Building 229 are candidates for public release for the defined disposition pathway.

Table 3. Results from building 387 interior. Building 387 interior

Interior alpha

Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	0.5	Mean	8
Standard Error	0.174547	Standard Error	2.666122
Median	0	Median	3
Mode	0	Mode	0
Standard Deviation	0.7	Standard Deviation	11
Sample Variance	0.548399	Sample Variance	127.9477
Minimum	0	Minimum	0
Maximum	2.5	Maximum	42
Count	18	Count	18
Confidence Level(95.0%)	0.368262	Confidence Level(95.0%)	5.625026
Interior Beta			
Removable (dpm/100cm²)		Direct (dpm/100cm²)	
Mean	1.3	Mean	26
Standard Error	0.471144	Standard Error	15.06684
Median	0.25	Median	0
Mode	0	Mode	0
Standard Deviation	2.0	Standard Deviation	64
Sample Variance	3.995588	Sample Variance	4086.173
Minimum	0	Minimum	0
Maximum	7	Maximum	232
Count	18	Count	18
Confidence Level(95.0%)	0.994028	Confidence Level(95.0%)	31.78825

Building 387 Exterior

Exterior Alpha

Removable		Direct	
(dpm/100cm²)		(dpm/100cm²)	
Mean	1.1	Mean	135
Standard Error	0.357071	Standard Error	38.26004
Median	0.5	Median	33.5
Mode	0	Mode	14
Standard Deviation	1.4	Standard Deviation	153
Sample Variance	2.04	Sample Variance	23421.3
Minimum	0	Minimum	3
Maximum	4.1	Maximum	383
Count	16	Count	16

Rev. 10/9/2015

Exterior Beta

Removable			
(dpm/100cm²)		Direct (dpm/100cm²)	
Mean	1.9	Mean	99.3
Standard Error	0.740552	Standard Error	34.71212
Median	0.6	Median	0
Mode	0	Mode	0
Standard Deviation	3.0	Standard Deviation	138.8
Sample Variance	8.774667	Sample Variance	19278.9
Minimum	0	Minimum	0
Maximum	10.8	Maximum	378
Count	16	Count	16
Confidence Level(95.0%)	1.578448	Confidence Level(95.0%)	73.98712

Conclusions from data:

Building 387- interior:

- No removable contamination. All results were <MDA
- All direct measurements for metal and materials for landfill disposal were IFB

Building 387- exterior:

- No removable contamination. All results were <MDA
- Direct measurements for metal and materials for landfill disposal were IFB for walls
- Direct measurements for the metal roof were > IFB. A Wilcoxon Rank Sum test of the data from the 16 measurements showed the combined measurements were IFB (rusted and non-rusted metal used in this analysis). However, the data show the roof measurements were significantly above the reference measurements for rusted metal.

Conclusion: Building materials from Building 387 are candidates for public release for the defined release pathway EXCEPT the exterior roof, which should be evaluated by Waste Management for waste disposition.

Conclusions

ENV-ES has evaluated the available process knowledge, as well as the survey results provided in Attachments 1 and 2, and found that surveys were adequate to support a conclusion of indistinguishable from background for all building materials from Buildings 227 (superstructure), 229 and 387. However, the roof of building 387 requires special attention since the values are statistically above background. The program should consult with LANL Waste Management prior to disposition of the roof material.

References

Los Alamos National Laboratory (2014). Eberline E-600 with Various Detectors. LANL Procedure RP-1-DP-043.02.

Los Alamos National Laboratory (2014). Environmental Radiation Protection. LANL Policy 412, R1.

Los Alamos National Laboratory (2015). Data Quality Objectives for Measurement of Radioactivity in or on Items for Transfer into the Public Domain. LANL Technical Project Plan ENV-ES-TPP-001, RO. Page 8 of 30

Rev. 10/9/2015

MARSAME (Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual), (2009). NUREG-1575 (Supp. 1), EPA 402-R-09-001, DOE/HS-004.

VSP Development Team (20150. Visual Sample Plan: A tool for design and analysis of environmental sampling. Version 7.4. Pacific Northwest National Laboratory. Richland, WA. http://vsp.pnnl.gov

Whicker, J.J., Gillis, J., McNaughton, M., Ruedig, E. Measurements of alpha and beta radiation from uncontaminated surfaces of common building materials. Los Alamos National Laboratory report LA-UR-28370; 2015.

Attachments and Appendices

Attachment 1: Final Status Survey Plan for Buildings 227 (superstructure), 229 and 387

Attachment 2: Results of surveys for Buildings 227 (superstructure), 229 and 387

Attachment 3: Summary statistics for background measurements of building materials

Attachment 1

FY15 D&D Package, TA-21 Sewage Treatment Facility Buildings 227, 229, and 387

TA-21 D&D MARSAME Final Status Sampling Plan Structures: 21-0227, 21-0229, & 21-0387

Rev. 0, Dated 10/20/2015

Prepared by:		Date:	
	Jeff Whicker/Jessica Gillis, ENV-ES, Environmental He	ealth Physics	
Approved by		Date:	
Approved by:	Mark Thacker, PM-8, UI PM FOD and D&D	Date	

Summary

The TA-21 sewage treatment Facility (STF) processed sewage for buildings in TA-21. The STF is no longer needed and is scheduled for demolition. Initial characterization surveys for Buildings 227, 229, 387, and associated sumps were completed in May 2015. Based on the results from the characterization survey, and pending a MARSAME release survey, ENV-ES found that the superstructure could be segregated from below grade structure for evaluation to be disposed as either uncontaminated industrial waste or recycle (concrete and metal). The scope of this sampling and analysis plan includes only the superstructure. Given the higher potential for contamination, a more thorough survey of the below grade structure, water, and sediment would be required using MARSAME protocol prior to any releases to industrial landfills or for recycle. For all materials, waste management requirements need to be met.

A characterization survey of the building was completed and the results used to develop this final MARSAME release survey. In some cases, the characterization survey was sufficient to meet MARSAME requirements and no further surveys are required. There are several areas where additional surveys are required to fully meet the objectives of MARSAME, and sampling plans for these areas are outlined in this document.

1. Purpose and Scope of the TA-18 D&D MARSAME Final Status Survey

- 1.1. There are three TA-21 structures (21-0227, 229 and 387) that needed to be characterized to support Decontamination & Demolition (D&D) of these structures. All structures within this plan are considered potentially radiologically impacted based on historical knowledge of operations at TA-21. Since the structures are still standing, the MARSSIM survey approach was utilized to perform characterization surveys of these structures. However, since these structures will eventually be demolished and the waste and any recyclable materials will be sent offsite for disposal, the MARSAME data analysis approach will be utilized to evaluate the waste debris and recyclable material for disposal path decisions, as appropriate and as outlined in technical project plan ENV-ES-TPP-001, "Data Quality Objectives for Measurements of Radioactivity in or on Items for Transfer into the Public Domain."
- 1.2. The full procedure for personal property release
- 1.3. Per MARSSIM Section 2.4, there are six principal steps in the MARSSIM Radiation Survey and Site Investigation Process:
 - Site Identification
 - Historical Site Assessment (HSA)
 - Scoping Survey
 - Characterization Survey
 - Remedial Action Support Survey
 - Final Status Survey
- 1.4. The MARSSIM HSA information for these structures is contained is Section 2 below. Given the location and function of the STF, we determined these building these buildings to have potential to contain radiological contamination, and therefore scoping/characterization surveys were completed.
- 1.5. Once the characterization survey was completed, the characterization data was analyzed against the MARSAME guidance. Based on the characterization results, no remedial actions were identified, and these results were used to plan for the final status surveys.
- 1.6. Notes and Assumptions:
 - 1.6.1. This Final Status Survey plan was prepared in accordance with P412, Environmental Radiation Protection, and developed using P412 Data Quality Objectives.
 - 1.6.2. The results of this survey are to be used for D&D planning purposes. Per MARSSIM Section 2.4.6, "data from other surveys conducted during the Radiation Survey and Site Investigation Process such as scoping, characterization, and remedial action support surveys can provide valuable information for planning a final status survey provided they are of sufficient

- quality." Release of building materials is contingent upon clean surfaces passing a final status survey, as appropriate.
- 1.6.3. The nominal release criteria for this D&D project are from Table 10-2 of P412 for surface contamination (see Section 4 of this plan). Further restrictions may be imposed by the Waste Management Coordinator.
- 1.6.4. Waste disposition pathways for material from D&D projects are as follows:
 - 1.6.4.1. Contaminated material that is known or suspected to exceed regulatory limits is to be disposed of as Low Level Waste (LLW).
 - 1.6.4.2. Radiologically encumbered metal items (items within areas posted as radiological areas) fall under the metals moratorium and may not be released.
 - 1.6.4.3. Unencumbered metals may be released for **reuse** within the DOE complex using the Table 10-2 criteria pending an ALARA evaluation.
 - 1.6.4.4. Unencumbered metals may be released to the public for **recycle** or **disposal** using indistinguishable from background criteria.
 - 1.6.4.5. Clean concrete may be released for recycle using the Table 10-2 criteria pending an ALARA evaluation.
 - 1.6.4.6. Other D&D debris may be released to landfill under NMED regulations using indistinguishable from background criteria.

2. Historical Site Assessment Information

- 2.1. The STF never had radiological operations or was ever posted for radiological purposes. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STF, and the these buildings are in the TA-21 air shed, the buildings associated with the STF (blds. 227, 229, and 387) are considered to be Class 3 materials, as defined under MARSAME (e.g., small potential for contamination, but at levels near background).
- 2.2. Attachment 1 provides the results of the characterization survey. Assessment of the surface contamination data in the characterization survey done for the upper superstructure at the sewage treatment plant (blds. 227, 229 and 387) showed no removable contamination and the direct surveys (alpha and beta) are consistent with background measurements of similar uncontaminated building materials. There was no detectable tritium in the smear surveys. These survey results combined with process knowledge confirm these structures as Class 3 under MARSAME guidance.

3. Survey Units and Data Analysis

3.1. This Final Status Survey is designed to provide sufficient information for D&D execution and disposition decisions. If surveyors encounter contamination or unexplained increases in standard deviation or measured concentrations during D&D, further mitigation, sampling, and data analysis may be required.

3.2. Building and room maps are to be used as rough estimates of the spatial layout of the buildings. Adjustments to the survey units and/or maps may be required based on building specifics for this characterization survey and any additional surveys.

4. Nominal Release Criteria

4.1. Table 1 presents the nominal release criteria for surface contamination.

Table 1: Values from P412 Section 1021 Table 10-2				
U-natural, U-235, U-238 and associated decay products (Removable)	1,000	dpm/100cm ²		
U-natural, U-235, U-238 and associated decay products (Total)	5,000	dpm/100cm ²		
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-125, I-129 (Removable)	20	dpm/100cm ²		
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-125, I-129 (Total)	100	dpm/100cm ²		
Th-natural, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133 (Removable)	200	dpm/100cm ²		
Th-natural, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133 (Total)	1,000	dpm/100cm ²		
β/γ emitters (Removable)	1,000	dpm/100cm ²		
β/γ emitters (Total)	5,000	dpm/100cm ²		
Tritium and Special Tritium Compounds	10,000	dpm/100cm ²		

4.2 Based on process knowledge of facility operations, sampling and data analysis for volumetric contamination is not required for the superstructure of the buildings. If evidence for volumetric contamination is encountered, volumetrically contaminated items may be released using a criterion of statistically indistinguishable from background, as compared to measured background radioactivity in clean materials.

5. General Survey Instructions

- 5.1 Verify characterization activities are on the applicable Plan-of-the-Day, as appropriate.
- 5.2 Perform a Pre-Evaluation Brief and/or Job Task Brief in accordance with P300.
- 5.3 Verify personnel have appropriate training for the applicable tasks they will be performing.
- 5.4 Comply with applicable Radiological Work Permit (RWP) requirements, if RWP is required.
- 5.5 Follow applicable IWD(s), as necessary.

6. Survey-Specific Instructions

- A general overview of the final status is provided in Table 2, and detailed locations for survey are for each of the buildings are provide in Appendix 1.
- 6.2 Follow P121, RP-1-DP-37 "Surveying for Fixed and Removable Contamination", and other applicable characterization and sampling procedures. Document all survey results on the appropriate survey form(s) and the survey map(s). All direct and removable measurement results are to be reported as dpm/100cm². Do not use "NDA."
- 6.3 The number of direct and removable measurements are specified in the following Survey Unit and Survey Requirement tables for each survey unit. Survey point locations (both direct counts and smears) will be a combination of "Uniformly Distributed" and "Biased" locations determined by the Surveyors. Uniformly distributed points shall be spread across all survey unit surfaces in a uniform, even, systematic pattern (similar to a grid pattern). Survey point locations may be changed based on accessibility issues via consultation with Duane Parsons or Jeff Whicker.
- 6.4 Collect and record direct measurement instrument background readings periodically during surveys (approximately 5 background measurements per survey unit). Identify and document background measurements on the survey form and maps with the survey unit number, "-BKG," and sequential background number (e.g. 1-BKG1, 1-BKG2, etc.). Collect background measurements on direct reading probes by pointing the probe into the air and away from any nearby surfaces.
- 6.5 Required Characterization Surveys include:
 - 6.5.1 Surface scan surveys using a SHP380AB (α / β) detector, listening for increased count rate areas.
 - 6.5.2 Surface scan surveys using a γ -specific detector, listening for increased count rate areas.
 - 6.5.3 60 second scalar direct surveys using an SHP380AB (α / β).
 - 6.5.4 Gamma spectral measurements on areas with increased count rates from the gamma scan survey.
 - 6.5.5 NUCON smears (counted for α and β/γ).
- OA survey measurements are required for MARSAME Final Status Surveys.

 Duplicate measurements should be made at approximately 10 percent of the surveyed locations.
- 6.7 Scan percentages are specified in the following Survey Unit and Survey Requirement tables for each survey unit. For any areas of noticeably elevated count rate, a biased measurement (direct and smear) shall be collected and documented. When biased surveying is required, scan surveys should be used to decide locations of biased survey points, or the biased locations can be selected based on process knowledge. Denote

biased surveys sequentially after the last systematic survey location. Biased measurement locations may include: high traffic areas such as room entrances, HVAC intakes and exhaust ducts, storage areas, areas of frequent personnel contact such as doors and door frames, horizontal surfaces such as lab counter tops and shelves, sinks, the openings to sink and floor drains; the tops of lights, beams, crane rails, structural beams, etc.

- On the survey forms, denote surface material (e.g., "concrete," "metal," etc.), as well as locations of biased surveys.
- 6.9 Use provided survey maps, or create scaled maps as necessary, to document the survey locations and results.
- 6.10 Smear survey results are to be reported in the form consistent with the results from HPAL. HPAL should be requested to report results as dpm/100cm² (not NDA). In consultation with HPAL, isotopic analysis can be performed on smears with high gross alpha/beta results if the radioisotope (or mixture) is unknown. Save all smears for possible future HPAL analysis.
- 6.11 Collect and maintain all characterization paperwork. Number each page of the survey unit packages using the format "XX of XX". Survey Unit packages should include survey forms, maps, HPAL smear results, and HPAL isotopic analysis (if required). Provide all completed paperwork to Duane Parsons or Jeff Whicker.

7. Surface Labeling Requirements

- 7.1 Denote survey unit location numbers on structure surfaces where measurements are obtained. Mark locations on using the survey unit designation plus the next sequential survey point location number. For example, for survey unit 21-5-2, location survey point number 5, mark the structure surface with the number 21-5-2-5.
- 7.2 The direct reading probe outline shall be drawn on the surface with a marker and a template to identify the exact surveyed location in the event a re-survey is necessary.
- 7.3 Denote on the survey map where the scan, direct, and smear surveys were performed. Scan area may be approximated by a highlighted/circled area in survey units that require less than 100% scanning. Record the general scan findings on the survey forms and/or maps.

8.0 Special Support and Safety Requirements

- 8.1 Upper walls and ceilings/roofs require access via ladders, scaffolding, man-lifts, etc.
- 8.2 Survey technicians shall be trained for elevated work.
- 8.3 Pest control will likely be required in and around all structures.

Table 2. Summary of Final Status Survey for Superstructure of Buildings 227, 229, and 387 at the TA-21 Sewage Treatment Facility

Class 3 Areas

These survey units have the potential to contain, or have ever contained, some residual radioactivity greater than natural or fallout background levels. Individual measurements may exceed background levels, but are not expected to exceed the action levels. A scan of between 10% and 100% of the available surface will be performed.

Survey Area	Survey Unit	Description	Scan %	Direct Survey	Smears	Media	Class Justification
21-0227	Interior walls and ceiling	Interior of main sewage treatment building- superstructure only	10% (Complete)	~20 ~2 QA	~20 ~2 QA		Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the walls and roof confirmed very low potential for contamination.
21-0227	Interior floor	Interior of main sewage treatment building- Superstructure only	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)		Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.

21-0229	Interior floor, walls and ceiling	Interior of STF support building	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)	Surfaces	Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.
21-0227 (note: characterization survey was sufficient to meet MARSAME release survey- no additional surveys required	Exterior walls and roof- superstructure only	Exterior of main sewage treatment building	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)	Surfaces	Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.

21-0229 (note: characterization survey was sufficient to meet MARSAME release survey- no additional surveys required	Exterior walls and roof	Exterior of STF support building	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)	Surfaces	Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.
21-0387 (note: characterization survey was sufficient to meet MARSAME release survey- no additional surveys required	Interior walls and roof	Interior of STF support building	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)	Surfaces	Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.

21-0387 (note: characterization survey was sufficient to meet MARSAME release survey- no additional surveys required	Exterior walls and roof	Exterior of STF support building	10% (Complete)	~15 ~2 QA (Complete)	15 ~2 QA (Complete)	Surfaces	Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STP is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background). Characterization surveys from the interior walls and roof confirmed very low potential for contamination.
		Building Exterior Total	Complete	Complete	NA	0	
		Interior Spaces Total	Complete	~50 ~6 QA	~50 ~6 QA	0	
		Class 3 Total	Complete	~50 ~6 QA	~50 NUCON ~6 QA	0	

Appendix 1. Specific Sampling Locations for Final Status Survey Building 227

227 Interior

Unit 1) Walls & Ceiling

• 19 additional measurements using systematic, triangular grid sampling

VSP measurement locations based on inputs from the building 227 interior characterization survey:

Parameter	DCGL [dpm/100cm ²] Choice	Expected [dpm/100cm ²] from characterization	Standard Dev [dpm/100cm ²] from characterization
Removable Alpha	6 MDA mean estimate	0.5	0.7
Direct Alpha	52 Minimum DCGL for mixed surfaces – stucco	25	20
Removable Beta	11 MDA mean estimate	0.3	1.8
Direct Beta	700 Approximate DCGL for non-concrete surfaces	72	126

DCGL = Derived Concentration Guideline Level from MARSAME. This value is used as the limit to which measurements are compared. In this survey, DCGL values represent a threshold for Indistinguishable from Background decision making.

Unit 2) Floor Components – COMPLETE – NO ADDITIONAL SAMPLING REQUIRED Characterization survey coverage was adequate:

- Radiological conditions have not changed since characterization
- Adequate coverage of accessible surfaces and adequate number of samples (see VSP sample location placement)
- For direct alpha, 3 of 18 were greater than instrument MDA (all less than 89 dpm/100cm² for bare concrete)
- For direct beta, 2 of 18 were greater than instrument MDA (both less than 3489 dpm/100cm² for bare concrete)
- All other measurements were < instrument MDA
- Adequate scanning (10%)

Proposed VSP measurement locations based on inputs from the building 227 interior characterization survey:

Parameter	DCGL [dpm/100cm ²] Choice	Expected [dpm/100cm²] from characterization	Standard Dev [dpm/100cm²] from characterization
Removable Alpha	6 MDA mean estimate	0.5	0.7
Direct Alpha	89 Background criterion for bare concrete	25	20
Removable Beta	11 MDA mean estimate	0.3	1.8
Direct Beta	700 Approximate DCGL for non-concrete surfaces	72	126

21-227 Exterior - COMPLETE - NO ADDITIONAL SAMPLING REQUIRED

Characterization survey coverage was adequate:

- Radiological conditions have not changed since characterization
- Semi-grid pattern over accessible surfaces
- Adequate number of samples (more than MARSSIM would assign for one decision area)
- For direct alpha, 5 of 24 were greater than instrument MDA (material varied but all less than 335 dpm/100cm² for rusted metal)
- For direct beta, 4 of 24 were greater than instrument MDA (concrete and roof asphalt shingles) highest was 531 dpm/100cm² which is less than concrete criterion 3489 dpm/100cm²
- All other measurements were < instrument MDA
- Adequate scanning (10%)

Proposed VSP measurement locations based on inputs from the building 227 exterior characterization survey:

Parameter	DCGL [dpm/100cm2] Choice	Expected [dpm/100cm2] from characterization	Standard Dev [dpm/100cm2] from characterization
		II om characterization	II om characterization
Removable Alpha	6	0.7	0.9
	MDA mean estimate		
Direct Alpha	129	39	48
	Background criterion for		
	galvanized metal		
Removable Beta	11	0.8	1.5
	MDA mean estimate		
Direct Beta	675	96	169
	Approximate DCGL for		
	rusted/painted metal surfaces		

Building 229

21-229 Interior - COMPLETE - NO ADDITIONAL SAMPLING REQUIRED

Characterization survey coverage was adequate:

- Radiological conditions have not changed since characterization
- Adequate coverage of accessible surfaces and adequate number of samples (see VSP sample location placement)
- For direct beta, 4 of 27 were greater than instrument MDA (all less than 3489 dpm/100cm² for bare concrete)
- All other measurements were < instrument MDA
- Adequate scanning (10%)

Proposed VSP measurement locations based on inputs from the building 229 interior characterization survey:

Parameter	DCGL [dpm/100cm2] Choice	Expected [dpm/100cm2] from characterization	Standard Dev [dpm/100cm2] from characterization
Removable Alpha	6	0.5	0.8
	MDA mean estimate		
Direct Alpha	83	9	10
	Background criterion for painted		
	concrete		
Removable Beta	11	1.0	1.7
	MDA mean estimate		
Direct Beta	675	90	170
	Approximate DCGL for		
	rusted/painted metal surfaces		

21-229 Exterior – COMPLETE – NO ADDITIONAL SAMPLING REQUIRED

Characterization survey coverage was adequate:

- Radiological conditions have not changed since characterization
- Semi-grid pattern over accessible surfaces
- Adequate number of samples (see VSP sample location placement)
- For direct alpha measurements, 11 out of 15 measurements were greater than instrument MDA, two measurements greater than the background criterion of 129 dpm/100cm² for galvanized metal, and all less than the background criterion for rusted metal (335 dpm/100cm²)
- All other measurements were < instrument MDA
- Adequate scanning (10%)

Proposed VSP measurement locations based on inputs from the building 229 exterior characterization survey:

Parameter	DCGL [dpm/100cm2] Choice	Expected [dpm/100cm2] from characterization	Standard Dev [dpm/100cm2] from characterization
Removable Alpha	6	0.9	0.8
	MDA mean estimate		
Direct Alpha	129	74	41
	Background criterion for		
	galvanized metal		
Removable Beta	11	1.5	2.6
	MDA mean estimate		
Direct Beta	150	4	16
	Background criterion for		
	galvanized metal		

Building 387

21-387 Interior - COMPLETE - NO ADDITIONAL SAMPLING REQUIRED

Characterization survey coverage was adequate:

- Radiological conditions have not changed since characterization
- Semi-grid pattern over accessible surfaces
- Adequate number of samples (see VSP sample location placement)
- Adequate scanning (10%)
- All measurements were < instrument MDA

Proposed VSP measurement locations based on inputs from the building 387 interior characterization survey:

Parameter	DCGL [dpm/100cm2] Choice	Expected [dpm/100cm2] from characterization	Standard Dev [dpm/100cm2] from characterization
Removable Alpha	6 MDA mean estimate	0.5	0.7
Direct Alpha	52 Minimum DCGL for mixed surfaces – stucco	8	11
Removable Beta	11 MDA mean estimate	1.3	2.0
Direct Beta	150 Background criterion for galvanized metal	26	64

21-387 Exterior - COMPLETE - NO ADDITIONAL SAMPLING REQUIRED

Characterization survey coverage was mostly adequate:

- Radiological conditions have not changed since characterization
- Based on radiological history of exterior surfaces, we believe there is adequate coverage of accessible surfaces and number of samples (see VSP sample location placement)
- For direct alpha measurements, 6 out of 16 measurements (all on the roof) were greater than instrument MDA and 3 measurements exceeded the background criterion for rusted metal (335 dpm/100cm²)
 - Sign test applied per MARSSIM Section 8.3.2 or MARSAME Section 6.5.1: survey unit could pass with 5 of 16 values greater than the DCGL – Therefore, the measurements combined are indistinguishable from background and no additional sampling is required.
- For direct beta measurements, 3 out of 16 measurements (all on the roof) were greater than instrument MDA but none exceeded the background criterion for rusted metal (672 dpm/100cm2)
- All other measurements were < instrument MDA
- Adequate scanning (10%)

Proposed VSP measurement locations based on inputs from the building 387 exterior characterization survey:

Parameter	DCGL [dpm/100cm2] Choice	Expected [dpm/100cm2] from characterization	Standard Dev [dpm/100cm2] from characterization
Removable Alpha	6 MDA mean estimate	1.1	1.4
Direct Alpha	335	135	153
	Background criterion for		
	rusted metal		
Removable Beta	11 MDA mean estimate	1.9	3
Direct Beta	672	99	139
	Background criterion for		
	rusted metal		

Maps of VSP-selected Sampling Locations

Note: Additional Final Status Survey sampling is ONLY required in building 227 interior

TA-21 Building 227

Figure 1. Final status survey locations are indicated with diamonds. Circled numbers represent sample locations from the characterization survey.

Figure 2. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

Figure 3. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

Figure 4. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

Figure 5. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

Figure 6. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

Figure 7. No additional sampling required in the shaded areas. VSP suggested sampling locations (black diamonds) are well-represented by the existing sampling locations (circled numbers).

ATTACHMENT 2

Contamination/Radiation Survey Report 2015

Survey Form Revision 0 TA-21 Building 227 Interior Characterization Survey **RWP NUMBER:** N/A Dose Rate Tritium Alpha Survey Number: Date/Time: (mrem/hr) Item Location Direct (dpm/100cm²) (dpm/100cm² Removable + Contact 30 cm (dpm/100cm²) TA21-2015-00102 5/20/2015 @ 1500 TA-21 Building 227 Interior dpm/100cm² (dpm/100cm² 0.0 0.0 Surveyor: Metal Plate 1.1 18.0 19.1 0.0 N/A Location: Metal Plate 0.0 7.0 7.0 6.1 0.0 6.1 N/A TA-21 Building 227 Int. B. Bonser / J. Luna 2 0.0 NDA Equipment 23.0 0.0 Metal Plate - T2 8.0 23.8 0.0 3 Survey Type: 0.0 0.0 0.0 Material Release 35.0 36.2 N/A Routine 4 Pipe 1.2 307.9 Pre-Job RWP Material Receipt 0.0 51.0 51.0 1.9 306.0 N/A 5 Concrete 0.0 242.0 242.0 Post-Job RWP Vehicle Release 0.0 46.0 46.0 N/A Concrete 6 Vehicle Receipt 79.0 79.0 47.2 0.0 N/A RMI Pipe 1.2 46.0 NDA Characterization Survey 51.0 51.0 3.4 0.0 3.4 Drums Pipe - T3 0.0 Contamination Radiation 9 Valve 0.0 18.0 18.0 0.0 0.0 0.0 N/A Characterization Survey of 62.0 63.7 Pipe 0.0 35.0 35.0 1.7 N/A 10 0.0 NDA TA-21 Building 227 Interior 23.0 24.1 0.0 0.0 Valve - T4 1.1 11 3.6 0.0 3.6 N/A 12 Vent Pipe 0.0 1.0 1.0 Tritium smear #1 is blank. 29.0 29.8 0.0 48.0 48.0 N/A 0.8 13 Grating 3.2 483.0 486.2 'T#' in the 'Location' column indicates the 0.0 63.0 63.0 N/A 14 Concrete tritium smear # also taken at this sample location. 15 Rail 0.0 12.0 12.0 3.6 0.0 3.6 N/A 29.0 30.3 0.6 0.0 0.6 N/A 1.3 16 Rail 0.0 Wall of Treatment Pit - N 1.2 0.0 N/A N/A Completed a 10% Scan of all accesible surfaces 1.2 N/A 17 MDA 3.4 N/A 3.4 N/A Instrument P/N # Cal Due Bkgd units 18 Wall of Treatment Pit - N 0.0 N/A 0.0 E600 9/29/2015 4.1 30 2.3 N/A 2.3 0.5 N/A 0.5 N/A 12013 a dpm 19 Wall of Treatment Pit - E 1028 252 2.7 1.5 N/A 1.5 N/A SHP380AB 12864 4/9/2016 βdpm Wall of Tratment Pit - S 2.7 N/A 20 0.4 N/A 0.4 N/A E600 12457 5/5/2016 27.2 53 a dpm Wall of Treatment Pit - S 0.0 N/A 0.0 21 252.0 252.0 N/A SHP380AB 13461 4/14/2016 1163 267 Bdpm 22 Concrete 0.0 79.0 79.0 0.0 14.3 0.8 21.0 21.8 NDA N Wood - T5 2.3 12.0 23 252.0 252.0 0.0 N/A Concrete 0.0 0.0 0.0 24 300.0 301.0 N/A Concrete 0.0 57.0 57.0 1.0 25 1.3 18.0 19.3 3.3 0.0 3.3 N/A 26 Pipe See attached data sheets 7.2 29.0 0.2 7.0 N/A 0.0 29.0 Metal Plate NDA 0.0 40.0 40.0 2.4 0.0 2.4 28 Metal Plate - T6 A 1.0 1.0 2.0 0.0 0.0 0.0 N/A Vent Pipe 29 3.5 103.0 106.5 N/A 13.0 RCT Signature: 30 Trough 0.0 13.0 N/A 1.1 3 N/A 3.0 N/A Wall of Treatment Pit - N 1.1 31 0 N/A 0.0 N/A Supervisor: Wall of Treatment Pit - S 1.2 N/A 1.2 0.9 8.0 N/A 0.8 0.9 N/A N/A 33 Floor of Treatment Pit - N 0 N/A 0.0 N/A 0 N/A 0.0 Floor of Treatment Pit - S Signature 35 18.0 0 35 35.0 N/A 0 18 Fiberglass Wall 2.5 NDA 2.5 0 Metal Vent Louver - T7 51 51.0

. 8		Contam	nination	Radiatio	on Surv	ey Repo	ort 2015	(Continua	tion)					
Survey Nu	mber:	Date/Time:				Comments:								
	TA21-2015-00102		5/20/201	5 @ 1500		1								
Location:		Surveyor:						TA-21	Building 227	Interior Char	acterization S	Survey		
	TA-21 Building 227 Interior		B. Bonse	r / J. Luna							Dono	Rate		
Item	Location		Alpha			Beta		Tritium			(mre			
#	TA-21 Building 227 Interior	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable + Direct	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable + Oved.	Removable (dpm/100cm²)	Contact beta/gamma	Contact neutron	30 cm beta/gamma	30 cm neutron	1 Meter beta/gamma	1 Meter neutron
37	insulated Wall	0.0	29.0	29.0	0.0	0.0	0.0	N/A						
38	Insulated Wall	0.0	12.0	12.0	0.0	0.0	0.0	N/A						
39	Insulated Wall	1.0	12.0	13.0	0.0	0.0	0.0	N/A						
40	Fiberglass Wall	1.3	29.0	30.3	0.0	113.0	113.0	N/A						/
41	Insulated Wall	0.0	23.0	23.0	0.0	0.0	0.0	N/A						
42	Fiberglass Wall	0.0	23.0	23.0	0.0	0.0	0.0	N/A		N				/
43	Exhaust Fan	0.8	12.0	12.8	4.8	0.0	4.8	N/A					/	
44	Insulated Wall - T8	0.0	12.0	12.0	3.2	0.0	3.2	NDA						
45	Wood 2 x 4 Joist Beam	0.0	29.0	29.0	0.0	0.0	0.0	N/A						
46	Insulated Ceiling - T9	0.0	0.0	0.0	0.0	0.0	0.0	NDA						
47	Insulated Ceiling	0.0	0.0	0.0	0.0	107.0	107.0	N/A					/	
48	Insulated Ceiling	0.0	0.0	0.0	1.5	130.0	131.5	N/A				/	ſ	
49	Trough at Exterior Opening	1.0	2.0	3.0	4.2	103.0	107.2	N/A				/		
50	Ext. Sump Wall - below trough - T10	0.0	9.0	9.0	0.0	9.0	9.0	NDA						
51	Top of Sump Wall	0.0	52.0	52.0	0.0	460.0	460.0	N/A						
52	Metal Sump Cover Plate	0.0	47.0	47.0	6.5	0.0	6.5	N/A						
53	End of Survey	N/A	N/A	N/A	N/A	N/A	N/A	N/A				/		
54											/			
55														
56														
57														
58			N								/			
59											/			
60										/				
61														
62														
63														
64										/				
65				/						/				
66			$\perp \!\!\! \perp \!\!\! \perp$						/				A	
67						Α								
68														
69														
70									/					
71	.							ļ	<u> </u>					

,	Contamination/Radiation Su	rvey Report 2015 (Continuation)
Survey Number:	Date/Time:	Comments:
TA21-2015-00102	5/20/2015 @ 1500	
Location:	Surveyor:	TA-21 Building 227 Interior Characterization Survey
TA-21 Building 227 Interior	B. Bonser / J. Luna	

TA-21 Building 227

HPAL ANALYSIS REPORT FILE: 29165391

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg: 227	Date: 05/22/15	Email: bbonser@lanl.gov
Room: Interior	Analyst: HOMAN VICTORIA M	
Priority: Routine		
Comments:		

Sample	Alpha	22	Alpha	Alpha	Beta	2	Beta	Beta
ID	Activity	sigma	MDA	MDA	Activity	sigma	MDA	MDA
	(dpm)	(dpm)	(dpm)	FLAG	(dpm)	(mgb)	(dpm)	Flag
ь	1.1	1.4	6.4		0.0	166.0	12.5	
2	0.0	251.3	5.3		6.1	ω .ω	10.2	
ω	0.8	1.4	7.1		0.0	174.1	12.3	
4	1.2	1.4	5.8		0.0	162.9	11.3	
ហ	0.0	258.5	6.1		1.9	2.9	10.9	
თ	0.0	256.9	5.3		0.0	157.9	10.7	
7	1.2	1.4	5.7		0.0	163.1	11.9	
œ	0.0	272.2	6.2		3.4	ω •	12	
9	0.0	246.4	6.2		0.0	158.5	10.8	
10	0.0	251.3	5.3		1.7	2.7	10.2	
11	1.1	1.4	6.4		0.0	166.0	12.5	
12	0.0	259.4	σ		3.6	3.2	11.3	
13	0.8	1.4	7.1		0.0	174.1	12.3	
14	0.0	253.0	5. 8		3.2	3.2	11.2	
15	0.0	258.5	6.1		3.6	3.1	10.9	
16	1.3	1.4	5,3		0.6	2.7	10.8	
17	1.2	1.4	5.7		0.0	163.1	11.9	
18	0.0	272.2	6.2		3.4	ω ω	12	
19	2.3	1.9	6.2		0.5	2.7	10.8	
20	2.7	2.0	5.3		1.5	2.7	10.2	
21	0.0	257.8	6.4		0.4	3.1	12.5	
22	0.0	259.4	O		0.0	173.4	11.3	
23	2.3	2.0	7.1		0.8	3.1	12.3	
24	0.0	253.0	5. 8		0.0	162.9	11.2	
25	0.0	258.5	6.1		1.0	2.7	10.9	
26	1.3	1.4	5.3		3.3	3.1	10.8	
27	0.0	251.0	5.7		0.2	2.9	11.9	
28	0.0	272.2	6.2		2.4	3.2	12	
29	1.0	1.4	6.2		0.0	158.5	10.8	
30	0.0	251.3	5.3		a.5	2.9	10.2	
31	1.1	1.4	6.4		3.0	3.5	12.5	
32	1.2	1.4	თ		0.0	173.4	11.3	
33	0.8	1.4	7.1		0.9	3.1	12.3	(d
34	0.0	253.0	5.8		0.0	162.9	11.2	
ω Ui	0.0	258.5	6.1		0.0	155.2	10.9	
36	0.0	256.9	5.3		2.5	2.9	10.7	
37	0.0	251.0	5.7		0.0	163.1	11.9	
38	0.0	272.2	6.2		0.0	166.2	12	

HPAL ANALYSIS REPORT

FILE: 29165391

Room: Interior Location TA:21 Bldg: 227 Sample Type: TWSR Login Date: 05/22/15 Sample Description Priority: Routine Date: Analyst: HOMAN VICTORIA M Analysis: GrossAB Instrument: Bertl 2010/143 Analysis Information 05/22/15 Name: BONSER BRYAN H Contact Information Email: bbonser@lanl.gov Phone: -

Comments:

Results not adjusted for energy, attenuation, or yield unless noted.

Sample	Alpha	2*	Alpha	Alpha		Beta	2*	Beta	Beta
Ħ	Activity	sigma	MDA	MDA	: 0.7	Activity	sigma	MDA	MDA
	(dpm)		(dpm)	FLAG		(dpm)	(dpm)	(dpm)	Flag
	1.0		6.2			0.0	158.5	10.8	
40	1.3		5.3			0.0	158.2	10.2	
41	0.0		6.4			0.0	166.0	12.5	
42	0.0		6			0.0	173.4	11.3	
43	0.8		7.1			4. 8.	3_6	12.3	
44	0.0		5.8			3.2	3.2	11.2	
45	0.0		6.1			0.0	155.2	10.9	
46	0.0		5.3			0.0	157.9	10.7	
47	0.0		5.7			0.0	163.1	11.9	
48	0.0		6.2			1.5	3.1	12	
49	1.0		6.2			4.2	3.2	10.8	
50	0.0		5.3			0.0	158.2	10.2	
51	0.0		6,4			0.0	166.0	12.5	
52	0.0		6			6.5	3.6	11.3	

	CACCOTA: 19713	
Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: TA3TC3	Name: BONSER BRYAN H
Sample Type: Trit. Smear	Analysis: Liquid Scint.	Phone: -
Location TA:21 Bldg: 227	Date: 05/22/15	Email: bbonser@lanl.gov
Room: Interior	Analyst: GARCIA FRANCISCO L	
Priority: Routine		

Comments:

9	00	7	თ	σı	4	ω	N	ь		Sample ID
NDA	(dpm)	Alpha Activity								
NDA	0/0	2* sigma								
NDA	(dpm)	H-3 Beta Activity								
NDA	0%	2* sigma								
NDA	(dpm)	Total Beta Activity								
NDA	(%)	2* sigma								

HPAL ANALYSIS REPORT

FILE: 29164380

Location TA:21 Bldg:n/a Sample Type: Trit. Smear Login Date: 05/29/15 Sample Description Room: sump Analyst: CHAVEZ MELISSA F Date: Analysis: Liquid Scint. Instrument: TA3TC3 Analysis Information 06/01/15 Contact Information Email: lpriesterjr@lanl.gov Phone: 500-7373 Name: PRIESTER LEROY JR.

Priority: Routine

Comments:

Sample	Alpha	2*	H-3 Beta	2 *	Total Beta	2*
ID	Activity	sigma	Activity	sigma	Activity	sigma
	(dpm)	(°)	(dpm)	o/o	(dpm)	(%)
1	NDA	NDA	NDA	NDA	NDA	NDA
o o	NDA	NDA	NDA	NDA	NDA	NDA
\$16.3.15	5					

Sample Description	Analysis Information	Contact Information
Login Date: 05/29/15	Instrument: LOAX-2	Name: PRIESTER LEROY JR.
Sample Type: Liquid	Analysis: Isotopic	Phone: 500-7373
Location TA:21 Bldg:n/a	Date: 06/02/15	Email: lpriesterjr@lanl.gov
Room: sump	Analyst: HOMAN VICTORIA M	
Priority: Routine		

Isotope Name Activity sigma 2* MDA

Sample ID or Description: 4. Analysis modified.

Comments:

NDA (mqb) NDA (dpm) NDA (dpm)

NONE-

Sample Description	Analysis Information	Contact Information
Login Date: 05/29/15	Instrument: TA3TC3	Name: PRIESTER LEROY JR.
Sample Type: Liquid	Analysis: Liquid Scint.	Phone: 500-7373
Location TA:21 Bldg:n/a	Date: 06/01/15	Email: lpriesterjr@lanl.gov
Room: sump	Analyst: HOMAN VICTORIA M	
Driority. Pontine		

Priority: Routine Comments:

Sample	Alpha	2*	H-3 Beta	2*	Total Beta	2 *
Ħ	Activity	sigma	Activity	sigma	Activity	sigma
	(uCi/L)	%	(uCi/L)	0/0	(uCi/L)	%)
μ	NDA	NDA	NDA	NDA	NDA	NDA
ы	NDA	NDA	NDA	NDA	NDA	NDA
ω	NDA	NDA	NDA	NDA	NDA	NDA
4	NDA	NDA	NDA	NDA	NDA	NDA

^
τ
ĭ
N
1
Ŧ
٠
F
-
•
Z
U
ř
V
7
_
<
Ξ
7
Г
П
RT-V HTALIKUL VAIVITLE VOUIVII I AL TORI
Y
C
ñ
\underline{v}
7
-
_
_
T
2
•
7
ċ
•
Z
-

	5-20-2015 @ 1000	No of	No of Camples: 52	2	Priority	Emergency
TA: 21	Bldg: 227	Room:	Interior		1	7 2 2 3
Submitter:	Bryan Bonser	Z No:	269854			Number Tra
Signature:					KT FACKED NATION	
Contact Name:	L. Priester	Z No:	259816			
Phone/Page/Email:	L. Priester 505-500-7373	5-500-7373			29165391	391
Sample Type & Analysis (C	heck Box and provide ad	ditional informatio	n if needed)		Comments/RPO RWP No:	
NuCon Filter (3) Liquid (3) Charcoal Sn	H-3 Air Smear Filter (3) Liqu	H-3 Air Filter Ct	Nasal Narcoal Smear	Other (4)		
Gross α/β					2	
7						
Isotopic (1,2)						
Leak Test (1)						
Source Std. (1)	D., 11					
1) Field Serson (dom):	×1000	Talaka Theta XIV/B	Nats X	T		
3) STC Type: None or list type	ype		ן המ מעשלים		Reporting Units:	Reporting Units:
4) Describe:			ļ			<u> </u>
Any Samples with	Any Samples with \geq 20K dpm alpha, \geq 100K dpm beta/gamma, or \geq 400K dpm tritium	100K dpm beta	√gamma, or ≥	400K dpm tr	itium	
5	7	SME	SMEARS/LIQUID/OTHER		Donation	
1 1-52	5-20-2015 @ 1000)00			TA21-227 Interior	
ω						
1 4						
CAMEIIT	CAM EII TER/AIR SAMPI ES/CHARCOAIS	RCOALS	Flow	Flow Rate Units:	□ cfm] lpm
Location	Eny Print Control Carol		Sample On		Sample Off	_
2						
3						
4						
ъ	5					
7						
∞						
9						
10				1	_	
~	NASAL SMEAR	7.7	Z Number	Group	Respirator D	Date Time
1						
2						
ω						
4						
5						
6						
7						
8						
9						
10						
3/2013						☐ Continuation
3/2013						1

3/2013

2	C	۱
6	Ì	ı
	۲	,
K	Ġ	1
Н	•	•
Е	۲	
E		
	Ļ	,
D))
ľ	-	
Ŀ	•	
17	Ţ	Į
ľ	1	١
171 - C 111 71-170E	_	
Į,	_	
Ŀ	•	1
В	₽	
E	_	
١-	t	1
ŀ		
l.	T	1
II.	٠.	•
ľ	I	1
l		
ŀ	Ţ	
Ľ	^	
4	C	
1:	_	
Į.		
ı.		i
1	_	
ŀ	P	
П		
١.		
۰		
ľ	_	į
l:	X	
ŀ		3
14	c	1

☐ Continuation					3/2013
					10
					9
					00
					7
					6
					CJ.
					4
					ω
					2
					1
Respirator Date Time	1	Z Number		Name	
			R	NASAL SMEAR	
					10
					9
					∞
					7
					ט מ
				~	л .
					4
					ا در
					2
			•		בו
Flow Rate	Flow Rate	Time	Date	Location	Lo
Sample Off Run Time	Flow Rate Units:		CHARCOALS	CAM FILTER/AIR SAMPLES/CHARCOALS	CAN
					5
					4
					ω
					2
TA21-227 Interior			1000	5-20-2015 @ 1000	1 1-9
Description		3	ne	Date/Time	Sample ID
	OTHER	SMEARS/LIQUID/OTHER			
ritium	r≥400K dpm t	n beta/gamma, o	, ≥ 100K dpm	Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium	Any Samples
⊠dpm ∐μCi □nCi□dpm/m3 □μCi/L □pCi/g				r list type	3) STC Type: None or list type 4) Describe:
Reporting Units:		∐beta ∐α/β	∐alpha		2) Field Screen (dpm):
]]	Pu, U, H3	1) Isotope(s):
					Source Std. (1)
					Leak Test (1)
					Isotopic (1,2)
#1 is a blank.					LSC
					Gross α/β
	other (4)	Charcoal Smear	H-3 Air Filter iquid (3)	NuCon Filter (3) Liquid (3) Charcoal Sn	NuCon
Comments/RPO RWP No:		rmation if needed)	additional info	sis (Check Box and provide	Sample Type & Analy
	ls.	ω	L. Priester 505-500-7373	L. Priester	Phone/Page/Email:
7.7	816	Z No: 259816		L. Priester	Contact Name:
				The state of the s	Signature:
21-227	854	Z No: 269854) B. Bonser	Submitter:
עווספו		Room: Interior		Bldg: 227	TA: 21
Priority Emergency	9	No. of Samples:	7	5-20-2015 @ 1000	Date/Time:
_	_				

ı		
Ľ	2	C
ı		Ē
ı	ì	_
1	i	J
ľ		•
Ľ		ľ
1		
I٠		2
١٠	J	2
п	r	
Ľ		•
1	7	ç
П	Ų	
и	r	
Ь	ľ	,
В	Š	(
Ŀ	J	2
Ľ		7
Ŀ		1
Ľ		C
Ш	r	
U	Г	T
l	L	
L	ř	_
ľ	•	-
П	Ċ	Ţ
Ľ	2	
F	2	2
1	-	
ı	-	7
+	=	-
ı]	Þ
1	ŕ	_
1	_	
1	_	1
ı	(
1	•	ī
П	2	2
п	4	•

10	9	000	7	6	5	4	u	2	<u></u>	Name	NASAL SMEAR	10	9	8	7	6	5	4	3	2	1	Location Date	CAM FILTER/AIR SAMPLES/CHARCOALS	5	4	. ω	2 2 5-29-2015 @ 1000				Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium	4) Describe:	3) STC Type: None or list type	n (dpm): alpha	1) Isotope(s): Pu, U, H3	Source Std. (1)	Leak Test (1)	Isotopic (1,2)		Gross α/β	NuCon Filter (3) Liquid (3)	H-3	Sample Type & Analysis (Check Box and provide additional inform	Phone/Page/Email: L. Priester 505-500-7373	Contact Name: L. Priester z	Signature:	Submitter:	227	J-29-2013 @ 1000	5-29-2015 @ 1000
										2 Number Group												Time Flow Rate	Flow Rate Units:				Bullaina	7		SMEARS/LIQUID/OTHER	oeta/gamma, or ≥ 400K di			\square beta $\square \alpha/\beta$							Charcoal Smear (4)	asal	nation if needed)		z No: 259816		Z No: 269854	Room: Sump (Int)		2
) E					3 C	3 6]	Kespirator	Routine Special											Date Time	Cfm Cample Off				Building 22/ Sump Below Trough (Int. 1-10)	Blank	Description		pm tritium			Deporting Unite				-	#1 is a blank.			13.* 13.*	Comments/RPO RWP No:	::		29164380			. [Priority
										III	Time											Flow Rate (hr)	Ipm Run Time										n3 ∏μCi/L ∏pCi/g						·											Emergency

3/2013

☐ Continuation

Contamination/Radiation Survey Report 2015

Survey Form Revision 0 TA-21 Building 227 Exterior Characterization Survey **RWP NUMBER:** N/A Dose Rate Beta Tritium Alpha Survey Number: Date/Time: (mrem/hr) Location Item Total (dpm/100cm²) Removable + 1 Meter 1 Meter Contact (dpm/100cm² Removable Removable beta/gamma 5/20/2015 @ 1500 TA-21 Building 227 Exterior TA21-2015-00103 Removable + (dom/100cm²) dpm/100cm NDA 0.1 0.0 0.1 0.0 2.0 2.0 Surveyor: East wall - Al siding - T2 .ocation: 0.0 0.0 NDA 20.2 0.0 1.2 19.0 2 East wall - Al siding - T3 B. Bonser / J. Luna TA-21 Bldg 227 Ext. 0.0 2.6 N/A Equipment 1.1 0.0 1.1 2.6 3 North wall - Al siding Survey Type: 0.0 0.0 0.0 N/A 0.0 0.0 Material Release 0.0 Painted metal door Routine 4 0.0 N/A 7.0 7.0 0.0 0.0 0.0 Pre-Job RWP Material Receipt 5 North wall - Al siding 532.5 N/A 531.0 0.0 30.0 30.0 1.5 Post-Job RWP Vehicle Release 6 Concrete footing 0.0 NDA 1.0 0.0 0.0 1.0 0.0 RMI Vehicle Receipt Painted metal door - T4 Ν 0.0 0.0 0.0 N/A 47.0 47.0 0.0 Characterization Survey Drums 8 North wall - Al siding 86.0 86.0 58.0 58.0 0.0 N/A 0.0 Contamination Radiation 9 Ventilation louvers 2.7 NDA 0.0 0.0 0.0 2.7 0.0 Characterization Survey of 10 South wall - fiberglass - T5 0.0 39.0 39.0 N/A 0.8 2.0 2.8 TA-21 Building 227 Exterior 11 South wall - wood 0.0 0.5 N/A 7.0 0.5 0.0 7.0 South wall - fiberglass 12 253.0 NDA 0.0 253.0 Tritium #1 is a blank. 0.0 164.0 164.0 South wall - metal flashing - T6 13 35.0 35.0 0.8 412.0 412.8 N/A 'T#' in the 'Location' column indicates the South wall - concrete footing 0.0 14 0.0 0.0 NDA 0.0 2.6 31.0 33.6 tritium smear # also taken at this sample location. 15 Roof - bare wood - T7 0.0 0.0 0.0 N/A 26.3 1.3 25.0 16 Roof - bare wood 0.0 NDA 0.0 1.0 142.0 143.0 0.0 Completed a 10% Scan of all accesible surfaces. 17 Fascia - rusted metal - T8 0.0 0.0 N/A 2.7 142.0 144.7 0.0 P/N # Cal Due Bkqd MDA units 18 Instrument Fascia - rusted metal 0.0 0.0 N/A 0.0 0.0 36.0 36.0 12013 9/29/2015 31.2 56 a dpm Roof - bare wood E600 19 NDA 1.5 470.0 471.5 1.2 53.0 54.2 4/9/2016 1041 253 SHP380AB 12864 βdpm 20 Roof - asphalt shingle - T9 4.8 0.0 4.8 N/A 75.0 75.8 N/A 8.0 Ν 21 Fascia - rusted metal 274.1 269.0 N/A 8.0 8.0 5.1 0.0 N/A 22 Roof - asphalt shingle 0.0 0.7 N/A 0.7 2.6 14.0 16.6 N/A 23 Soffet - Oriented Strand Board 252.0 252.0 N/A 44.0 44.0 0.0 N/A 0.0 Α 24 Roof - asphalt shingles N/A N/A N/A N/A N/A N/A **End of Survey** N/A 25 26 See attached data sheets 27 N 28 29 RCT Signature: 30 31 L. Priester / B. Mclean 32 Supervisor: 33 Α 34 35

36

Co	ontamination/Radiation S	Survey Report 2015 (Con	tinuation)
Survey Number: TA21-2015-00103 Location: TA-21 Building 227 Exterior	Date/Time: 5/20/2015 @ 1500 Surveyor: B. Bonser / J. Luna	Comments:	A-21 Building 227 Exterior Characterization Survey
TA-21 Building 227 Exterior		Tth Wall 6 Door 4 3	
	T9 (20)	23)	② ^{T3}
Ventilation Louvers 9	F	Roof	Exhaust Fan East Wall
	(19) T8	(16) (15) ^{T7}	① ^{T2}
	T5 (11)	outh Wall 13	

HPAL ANALYSIS REPORT
FILE: 29165392

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg:227	Date: 05/22/15	Email: bbonser@lanl.gov
Room: Exterior	Analyst: HOMAN VICTORIA M	

Comments:

Results not adjusted for energy, attenuation, or yield unless noted.

Sample ID	Alpha Activity	2* sigma	Alpha MDA	Alpha MDA	Alpha Beta MDA Activity
	(dpm)	(mdp)	(dpm)	FLAG	FLAG (dpm)
1	0.0	259.2	7.1		0.1
Ŋ	1.2	1.4	5. 8		0.0
ω	1.1	1.4	6.1		2.6
4	0.0	256.9	5.3		0.0
υī	0.0	251.0	5.7		0.0
σ	0.0	272.2	6.2		1.5
7	1.0	1.4	6.2		0.0
œ	0.0	251.3	5.3		0.0
9	0.0	257.8	6.4		0.0
10	0.0	259.4	O		2.7
11	0.8	1.4	7.1		0.0
12	0.0	253.0	5.8		0.5
13	0.0	258.5	6.1		0.0
14	0.0	256.9	5.3		0.8
15	2.6	2.0	5.7		0.0
16	1.3	1.5	6.2		0.0
17	1.0	1.4	6.2		0.0
18	2.7	2.0	5.3		0.0
19	0.0	257.8	6.4		0.0
20	1.2	1.4	6		1.5
21	0.8	1.4	7.1		4.8
22	0.0	253.0	5.8		5.1
23	2.6	2.0	6.1		0.7
3 4	•				

ř.

HPAL ANALYSIS REPORT FILE: 29165396

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: TA3TC3	Name: BONSER BRYAN H
Sample Type: Trit. Smear	Analysis: Liquid Scint.	Phone: -
Location TA:21 Bldg: 227	Date: 05/22/15	Email: bbonser@lanl.gov
Room:	Analyst: GARCIA FRANCISCO L	
Priority: Routine		

Comments:

Sample ID	Alpha Activity	2* sigma	H-3 Beta Activity	2* sigma	Total Beta Activity	2* sigma	
	(dpm)	%)	(dpm)	%	(mqbn)	(%)	
ь	NDA	NDA	NDA	NDA	NDA	NDA	
22	NDA	NDA	NDA	NDA	NDA	NDA	
ω	NDA	NDA	NDA	NDA	NDA	NDA	
4	NDA	NDA	NDA	NDA	NDA	NDA	
5	NDA	NDA	NDA	NDA	NDA	NDA	
თ	NDA	NDA	NDA	NDA	NDA	NDA	
7	NDA	NDA	NDA	NDA	NDA	NDA	
ω	NDA	NDA	NDA	NDA	NDA	NDA	
9	NDA	NDA	NDA	NDA	NDA	NDA	

II.		
17	ζ	J
-	τ	7
	ĩ	•
h	Ĺ	1
ľ	1	
	1	
-	Ť	1
1	ì	
	-	
ı.		
-	÷	
1:	?	
L	_	2
ľ		
1	1	5
ŀ	ŕ	
عا	_	
1	C	
1:	-	1
L.	スプ・ノ エプレー・スノー ノレ・マー・ ノニ・ス・マー・ス・ト	
П		•
П	ī	1
١e	4	
Ľ	_	
ľ	_	
lt	J	
ŀ		7
13	5	
ŀ	=	
ŀ	-	
ŀ	-	
ŀ	C	2
1:		
ľ		
ŀ	7	
14	Ė	٠
L	`	
ŀ	J	
L	-	
13	2	3

			10
			9
			8
			7
			6
			G
			4
			ω
			2
			1
Respirator Date Time	Z Number Group	Name	
pecial	Type:	NASAL SMEAR	
			10
			9
			8
			7
			6
			5
			4
			ω
			2
			1
Date Time Flow Rate (hr)	Time Flow Rate	Date	Location
Sample Off Run Time	Sample On	CAM FILTER/AIR SAMPLES/CHARCOALS	CAIVI FIL
	Flow Pata Unite:	TED AND SAMPLES CHARCOALS	
			л 4
			A 0
			ω
TA21-227 Exterior		5-20-2015 @ 1100	1 1-24
Description	SMEARS/LIQUID/OTHER	Date/Time	Sample ID
ritium	Any Samples with \geq 20K dpm alpha, \geq 100K dpm beta/gamma, or \geq 400K dpm tritium	ı ≥ 20K dpm alpha, ≥ 100K dpm	Any Samples with
			t) Describe.
Reporting Units: ☑dpm ☐μCi ☐nCi ☐dpm/m3 ☐μCi/L ☐pCi/g	\square alpha \square beta $\boxtimes \alpha/\beta$	<1000	2) Field Screen (dpm):
		Pu, U	1) Isotope(s):
			Source Std. (1)
			Leak Test (1)
			Isotopic (1,2)
N/A			LSC
			Gross α/β
	Nasal Other Charcoal Smear (4)	Air Smear H-3 Air NuCon Filter (3) Liquid (3) Charcoal Sn	NuCon
Comments/RPO RWP No:	rmation if needed)	Check Box and provide additional info	Sample Type & Analysis (
29103392		L. Priester 505-500-7373	Phone/Page/Email:
20165302	Z No: 259816	L. Priester	Contact Name:
trying the state of the state o		En la company de	Signature:
RP Tracking Number 21-227	Z No: 269854	Bryah Bonser	Submitter:
Tradition Missishing	Room: Exterior	Bldg:227	TA: 21
Priority Emergency	No. of Samples:24	5-20-2015 @ 1100	Date/Time: 5-20

3/2013

☐ Continuation

RP-2 HPA
HP/
AL:RSL S/
MPLE SUBMIT
E SUI
BMITT
TAL
FORN
7

Date/Time: 5-20 TA: 21 Submitter: 21 Signature: 21 Contact Name: 21 Phone/Page/Email: 21 Phone/Page/Email: 21 NuCon Gross α/β LSC	Date/Time: 5-20-2015 @ 1500 No. of Samples:	No. of Samples: 9 Room: Exterior Z No: 269854 Z No: 259816 JO-7373 JO-7373 Charcoal Smear Other (4)	Priority Emergency Tracking Number RP Tracking Number 21-227 RP Tracking Number 21-227 RP Tracking Number 21-227 RP Tracking Number 21-327 RP Tracking Number 21-327
Isotopic (1,2) Leak Test (1) Source Std. (1) 1) Isotope(s): 2) Field Screen (dpm): 3) STC Type: None or list type 4) Describe:	U, H3	alpha Deta Dα/β	#1 is a blank. Reporting Units: ⊠dpm □μCi □nCi □dpm/m3 □μCi/L □pCi/g
Any Samples with	າ ≥ 20K dpm alpha, ≥ 100	Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium SMEARS/LIQUID/OTHER	m tritium
Sample ID 1 1-9	Date/Time 5-20-2015 @ 1500		TA21-227 Exterior
2 3 2		12.	
	CAM FILTER/AIR SAMPLES/CHARCOALS)ALS Flow Rate Units:	☐ cfm ☐ lpm
Location		Sample On Time	Sample Off Date Time
1			
ω 1			
4			
6 5			
7			
0 8			
10			
	NASAL SMEAR	Type:	Recoilator Date Time
in the	Name		
2			
ω			
4			
5			
6			
7			
8			
9			
10			

3/2013

☐ Continuation

E					C	on	tamination/Radi	ation	Surv	ey Re	port	2015	5		9					
RWP N	UMBE	R:	N/A		TA	-21	Building 229 Cha	aracte	rizati	on Su	ırvey				C			Surve	y Form Rev	rision 0
Survey Number	r:	Date/Time:				Item	Location		Alpha			Beta		Tritium		V	Dose (mre	Rate m/hr)		
TA21-2015	5-00104	5/20	/2015 @	1100	C	#	TA-21 Building 229	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable + Direct	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable + Direct	Removable (dpm/100cm²)	Contact beta/gamma	Contact neutron	30 cm be(a/gamma	30 cm neutron	1 Meter beta/gamma	1 Meter neutron
Location:		Surveyor:				1	Concrete	0.0	11.0	11.0	3.4	433.0	436.4	N/A						 /
TA-21 Build	ding 229	B. Be	onser/.	J. Luna	1	2	Floor Drain - T2	0.0	0.0	0.0	0.0	185.0	185.0	NDA						
Survey Type:		Equipme	nt			3	Concrete	1.1	0.0	1.1	0.0	453.0	453.0	N/A						-/-
Routine		Material F	Release			4	Concrete - T3	1.2	0.0	1.2	0.0	538.0	538.0	NDA						-
Pre-Job R\	WP	Material I	Receipt			5	Concrete	0.0	6.0	6.0	6.9	480.0	486.9	N/A						/
Post-Job R	RWP	Vehicle F	Release			6	N: Wall interior - metal	1.2	0.0	1.2	0.0	0.0	0.0	N/A						/
RMI		Vehicle F	Receipt			7	E. Wall interior - metal	0.0	0.0	0.0	0.0	49.0	49.0	N/A					/	
Drums		Characte	rization S	Survey		8	E. Wall interior - wood	0.0	0.0	0.0	0.0	0.0	0.0	N/A		N			\perp	
Contamina	ation		Radiatio	n		9	S. Wall interior - wood - T4	1.2	11.0	12.2	0.0	96.0	96.0	NDA						
Characterizat	tion Surve	y of				10	S. Wall interior - wood	0.0	0.0	0.0	2.4	73.0	75.4	N/A						
TA-21 Build	ing 229					11	Window - glass	2.3	6.0	8.3	0.0	69.0	69.0	N/A					/	
	-					12	S. Wall - metal	0.0	11.0	11.0	0.0	0.0	0.0	N/A					<i>Y</i>	
Tritium Smea	ars #1 and	#11 are blai	nk			13	S. Wall - metal	0.0	0.0	0.0	0.0	32.0	32.0	N/A						
'T#' in the 'Lo	ocation' co	lumn indicat	tes the			14	W. Wall - metal	2.6	28.0	30.6	4.3	28.0	32.3	N/A						
tritium smea	ar # also ta	ken at this s	ample I	ocatior	٦.	15	W. Wall - metal	0.0	0.0	0.0	1.0	0.0	1.0	N/A						
			•			16	W. Wall - metal - T5	0.0	16.0	16.0	1.4	0.0	1.4	NDA						
Completed a	10% Scar	of all acces	sible su	ırfaces		17	N. Wall - metal	0.0	13.0	13.0	0.0	0.0	0.0	N/A				1		
Instrument	P/N #	Cal Due	Bkgd	MDA	_	18	Electrical Panel - exterior	1.3	7.0	8.3	1.5	0.0	1.5	N/A						
E600	12457	5/5/2016	8.8	37	а фрт	19	Electrical Panel - interior	0.0	9.0	9.0	0.0	0.0	0.0	N/A			1			
SHP380AB	13451	4/14/2016	1360	287	βdpm	20	Ceiling - metal	1.3	40.0	41.3	0.0	0.0	0.0	N/A						
E600	12013	9/29/2015	15.9	44	a dpm	21	Ceiling - metal	0.0	7.0	7.0	2.5	0.0	2.5	N/A						
SHP380AB	12864	4/9/2016	973	245	βdpm	22		0.0	13.0	13.0	0.0	0.0	0.0	N/A						
N N	12004	4/3/2010	070	240	N/A	23	Ceiling - metal	0.0	13.0	13.0	3.2	0.0	3.2	N/A			1/			
14			A	-	N/A	24	Ceiling - metal	0.0	19.0	19.0	0.8	0.0	0.8	N/A			V			
					1	_	Ceiling - metal	0.8	7.0	7.8	0.0	0.0	0.0	N/A			1			
See attached da	oto obooto					25	Pump base	0.0	29.0	29.0	0.0	0.0	0.0	N/A		1				
See allached de	ala sneets.					26	Pump housing	 	7.0	8.1	0.0	0.0	0.0	N/A		 				
)				27	Beam - metal	1.1		28.7		0.0	0.0	NDA		 / 				
1	V	/				28	N. Wall exterior - Al siding - T6	2.7	26.0		0.0	0.0	0.0	N/A		1/			A	
507.0	(1)					29	N. Wall exterior - Al siding	1.2	73.0	74.2	0.1				-	/			1	
RCT Signature:	CALS					30	N. Wall exterior - Al siding	0.0	79.0	79.0	0.0	0.0	0.0	N/A	 	/				
0		Deinates / D	Malaar			31	W. Wall exterior - Al siding	1.0	73.0	74.0	0.6	0.0		N/A	 					
Supervisor:	_ L	Priester / B.	iviciean		-	32	Window - glass - T7	1.3	18.0	19.3	1.6	0.0	1.6	NDA NVA	 		1	+		
	(/)		A	,		33	W. Wall - Al siding	1.1	79.0	80.1	0.0	0.0	0.0	N/A	 / 		-	+	 	
Signature	J.¥¥	_ D	(0)		=	34	S. Wall - Al siding - T8	0.0	62.0	62.0	0.0	0.0	0.0	NDA	 / 	-	†	-	+	
	(35	S. Wall - Al siding	0.8	55.0	55.8	0.0	0.0	0.0	N/A	/			-	+	1
	5-67					36	S. Wall - Al siding	1.2	70.0	71.2	0.4	0.0	0.4	N/A	<u> </u>					

			mation	/Radiatio	Jii Gui v		1020.0	(
Súrvey Nu		Date/Time:	F100100	E @ 1100		Comments:									
aanti	TA21-2015-00104	Suprovers	5/20/201	5 @ 1100		1			TΔ	\-21 Building	229 Characte	rization Surv	ev		
_ocation:	TA-21 Building 229	Surveyor:	B Bonse	er / J. Luna											
			Alpha			Beta		Tritiu	m T				Rate		
Item	Location	Removable		Total	Removable		Total	Removal		Contact	Contact	(mre	30 cm	1 Meter	1 Meter
#	TA-21 Building 229	(dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm³) Removable + Direct	(dpm/100cm²)	Direct (dpm/100cm²)	(dpm/100cm²) Removable + Direct	(dpm/100d	cm³)	beta/gamma	neutron	beta/gamma	neutron	beta/gamma	neutron
37	N. Wall exterior - Al siding - T9	1.1	73.0	74.1	0.0	0.0	0.0	ND/							
38	N. Wall exterior - Al siding - T10	2.3	38.0	40.3	8.4	0.0	8.4	ND/							/
39	Roof - metal - T12	0.0	126.0	126.0	4.7	0.0	4.7	ND/							
40	Roof - metal	1.3	148.0	149.3	1.4	0.0	1.4	N/A							/
41	Roof - metal - T13	0.0	42.0	42.0	0.0	62.0	62.0	ND/							/
42	Roof - metal	0.0	154.0	154.0	5.2	0.0	5.2	N/A						/	1
43	End of Survey	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1		,			/	
44								\vdash	-		N				
45															
46		-					/							/	
47							/	1						/	
48			N				1	1							
49		+		 				1							
50			-			 / 									
51						1/									
52						/							/		
53 54															
55															
56															
57															
58															
.59												/			
60											/	1			
61											/				
62				Y											
63								1							
64											/			A	
65											/				
66										<u> </u>					
67			1			A									-
68		1 /													
69		1/								- /				-	
70		1/				-				/					-
71	ļ	V		1				+		γ		l			

*	Cor	ntaminatio	n/Radia	tion Survey F	Report 201	5 (Continuation	1)		
Survey Number:		Date/Time:			Comments:				
TA21-2015-00104		Surveyor:)/2015 @ 110	00		TA-21 I	Building 229 Characterizati	on Survey	
TA-21 Building 229			Bonser / J. Lu	na					
TA-21 Building 229 Interior	(17)	19 Electrical Panel		Door 6					
16) TS Window	(4) ^{T3}	(3) (26) (25)		① T2 (3)		Window	23)	27)	(24) (21)
	(13)	12)	Window 11	(9) ^{T4}					

41	Contamination/Radiation Su	rvey Report 2015 (Continuation)
Survey Number:	Date/Time:	Comments:
TA21-2015-00104	5/20/2015 @ 1100	
Location:	Surveyor:	TA-21 Building 229 Characterization Survey
TA-21 Building 229	B. Bonser / J. Luna	

Sample Description	Analysis information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg: 229	Date: 05/22/15	Email: bbonser@lanl.gov
Room: N/A	Analyst: HOMAN VICTORIA M	
Priority: Routine		
Comments:		

Results not adjusted for energy, attenuation, or yield unless noted.

	10.8	ა. 8	8.4		6.2	1.9	2.3	38
	10.9	2.6	0.0		6.1	1.4	1.1	37
	11.3	2.7	0.4		5 7 8	1.4	1.2	36
	12.3	174.1	0.0		7.1	1.4	0.8	ა 5
	11.3	173.4	0.0		Ø	259.4	0.0	34
	12.5	166.0	0.0		6.4	1.4	1.1	33
	10.2	2.7	1.6		5. 3	1.4	1.3	32
	10.8	2.7	0.6		6.2	1.4	1.0	31
	12	166.2	0.0		6.2	272.2	0.0	30
	11.9	2.9	0.1		5.7	1.4	1.2	29
	10.8	157.9	0.0		5.3	2.0	2.7	28
	10.9	155.2	0.0		6.1	1.4	1.1	27
	11.2	162.9	0.0		5.8	253.0	0.0	26
	12.3	174.1	0.0		7.1	1.4	0.8	25
	11.3	2.7	0.8		o,	259.4	0.0	24
	12.5	3.5	3.2		6.4	257.8	0.0	23
	10.2	158.2	0.0		5.3	251.3	0.0	22
	10.8	2.9	2.5		6.2	246.4	0.0	21
	12	166.2	0.0		6.2	1.5	1.3	20
	11.9	163.1	0.0		5.7	251.0	0.0	19
	10.8	2.8	1.5		5.3	1.4	1.3	18
	10.9	155.2	0.0		6.1	258.5	0.0	17
	11.2	2.9	1.4		5.8	253.0	0.0	16
	12.3	3.1	1.0		7.1	259.2	0.0	15
	11.3	3.4	4.3		σ	2.0	2.6	14
	12.5	166.0	0.0		6.4	257.8	0.0	13
	10.2	158.2	0.0		5.3	251.3	0.0	12
	10.8	158.5	0.0		6.2	1.9	2.3	11
	12	3.2	2.4		6.2	272.2	0.0	10
	11.9	163.1	0.0		5.7	1.4	1.2	9
	10.7	157.9	0.0		5. ω	256.9	0.0	œ
	10.9	155.2	0.0		6.1	258.5	0.0	7
	11.3	162.9	0.0		5.8	1.4	1.2	თ
	12.3	3.9	6.9		7.1	259.2	0.0	υī
	11.3	173.4	0.0		O	1.4	1.2	4
	12.5	166.0	0.0		6.4	1.4	1.1	ω
	10.2	158.2	0.0		5.3	251.3	0.0	2
	10.8	3.1	3.4	:	6.2	246.4	0.0	Н
Flag	(dpm)	(dpm)	(dpm)	FLAG	(dpm)	(dpm)	(dpm)	
MDA	MDA	sigma	Activity	MDA	MDA	sigma	Activity	ij
Beta	Beta	2*	Beta	Alpha	Alpha	2*	Alpha	Sample

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg: 229	Date: 05/22/15	Email: bbonser@lanl.gov
Room: N/A	Analyst: HOMAN VICTORIA M	
Driority: Boutine		

Priority: Routine Comments:

Results not adjusted for energy, attenuation, or yield unless noted.

		40			Ĭ	
0.0	0.0	1.3	0.0	(dpm)	Activity	Alpha
251.3	246.4	1.5	251.0	(dpm)	sigma	2*
σ. ω	6.2	6.2	5.7	(dpm)	MDA	Alpha
				FLAG	MDA	Alpha
5.2	0.0	1.4	4.7	(dpm)	Activity	Beta
3.2	158.5	3.1	3.5	(dpm)	sigma	2
10.2	10.8	12	11.9	(dpm)	MDA	Beta
				Flag	MDA	Beta

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: TA3TC3	Name: BONSER BRYAN H
Sample Type: Trit. Smear	Analysis: Liquid Scint.	Phone: -
Location TA:21 Bldg: 229	Date: 05/22/15	Email: bbonser@lanl.gov
Room: N/A	Analyst: HILLMER ELIZABETH	
Priority: Routine	А	
Commonts.		

Comments:

Sample	Alpha	2 *	H-3 Beta	2*	Total Beta	2 *
ŭ,	Activity	sigma	Activity	sigma	Activity	s i gma
	(dpm)	%	(dpm)	%	(dpm)	(%)
1	NDA	NDA	NDA	NDA	NDA	NDA
2	NDA	NDA	NDA	NDA	NDA	NDA
w	NDA	NDA	NDA	NDA	NDA	NDA
4	NDA	NDA	NDA	NDA	NDA	NDA
ъ	NDA	NDA	NDA	NDA	NDA	NDA
6	NDA	NDA	NDA	NDA	NDA	NDA
7	NDA	NDA	NDA	NDA	NDA	NDA
œ	NDA	NDA	NDA	NDA	NDA	NDA
9	NDA	NDA	NDA	NDA	NDA	NDA
10	NDA	NDA	NDA	NDA	NDA	NDA
11	NDA	NDA	NDA	NDA	NDA	NDA
12	NDA	NDA	NDA	NDA	NDA	NDA
13	NDA	NDA	NDA	NDA	NDA	NDA

RP-2 HPAL:RSL SAMPLE SUBMITTAL FORM

10	9	00	7	6	5	4	w	2	1	Name	NASAL SMEAR	10	9	88	7	5 0			Date		CAM FILTER/AIR SAMPLES/CHARCOALS		4	ω !r	Ī	1-42 5-20-2015 @ 1500	Date/Time	Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium	ist type	1) Isotope(s):	Leak Test (1)	solopic (1,2)	ISC	ss α/β	NuCon Filter (3) Liquid (3)	Sample Type & Analysis (Check Box and provide additional information if needed) Air Smear Filter N	Phone/Page/Email: L. Priester 505-500-7373	Contact Name: L. Priester Z	Signature:	Submitter: Bryan Bonser 2	TA:	Date/Time: 5-20-2015 @ 1500 No
										Z Number Group	Туре:								Time Flow Rate	Sample On	Flow Rate Units:						SMEARS/LIQUID/OTHER	oeta/gamma, or≥ 400K dpm		□ beta ⊠α/β					Charcoal Smear (4)	252	10	Z No: 259816		Z No: 269854	Room: N/A	No. of Samples: 42
										Respirator Date Time	Routine Special								Flow Rate	Sample Off Ru	s:	[4]				TA21-229	Description	tritium	Reporting Units: ☑ dpm ☐μCi ☐nCi ☐dpm/m3 ☐μCi/L ☐pCi/g				N/A			Comments/RPO RWP No:		29165393	7.66		Tracking Number	Priority Emergency

3/2013 ☐ Continuation

_	_	_
7	Ç	Į
NE TO THE OFFICE OF STREET OF STREET	ř	
!	٠	ı
Ų	ı	
r		į
Ē	-	1
-	T	
-	•	
-	C	1
•	3	•
и	P	,
ŕ		
-	ř	
	٩	ı
L	1	1
ř	_	
ľ		
1	4	۹
3	•	4
D	٥	3
F	_	
d	C	•
	1	1
-	t	7
١.	•	
И		
ш	τ	
II.		_
ĸ	I	Q
l	Ė	
ı۷		
ı	1	
Ľ	_	•
ı	7	ð
ŀ	2	3
1	_	
١.		
١.		
١٩	h	9
2	•	_
П	_	
L		
١٦	ı	_
1	•	٠
I١		
۰	7	
12	_	
l	ř	7

	10	9	8	7	6	5	4	3	2	1			10	9	00	7	6	n 1	2 6	ω	2	<u></u>	Location	CAMI	5	4	ω	2	1 1-13	Sample ID		Any Samples w	3) STC Type: None or list type 4) Describe:	1) Isotope(s): 2) Field Screen (dpm):	Source Std. (1)	Leak Test (1)	Isotopic (1,2)	LSC	Gross α/β	NuCor	Sample Type & Analysi	Phone/Page/Email:	Contact Name:	Signature:	Submitter:	TA: 21	Date/Time:5-2
Plow Rate Units: Flow Rate Date Flow Rate Group Respirator Date Group Respirator Date Group Respirator Date Group Respirator Date Comments Co											ш	NASAL SMEAR					9						ion	ILTER/AIR SAMPLES/CHAR					5-20-2015 @ 1100	Date/Time		ith ≥ 20K dpm alpha, ≥ 10	Ĭ							Air Smear 1 Filter (3) Liquid	s (Check Box and provide addit	L. Priester 505-	L. Priester	and a	B. Bonser		5-20-2015 @ 1100
RP Tracking Number 29165397 ents/RPO RWP No: #1 and #11 are blanks, #1 and #11 are blanks,												Туре:											Time	Sample On					0		SMEARS/LIQUID/OTHER	00K dpm beta/gamma, or ≥ 400K dp		\square alpha \square beta $\square \alpha/\beta$						near	<u> </u>	-500-7373	No:				No. of Samples:13
											Date	pecial											Date Time Flow Rate	Cample Off					TA21-229	Description		om tritium	Reporting Units: X dpm μCi nCi dpm/m3 μCi/L					#1 and #11 are blanks.			Comments/RPO RWP No:		29165397		RP Tracking Number	Tracking Number	Priority Emergency

3/2013

☐ Continuation

Contamination/Radiation Survey Report 2015

TA-21 Building 387 Characterization Survey **RWP NUMBER:** N/A Survey Form Revision 0 Dose Rate Tritium Date/Time: Alpha Beta Survey Number: Item Location (mrem/hr) Removable (dpm/100cm²) Direct (dpm/100cm² (dpm/100cm²) Direct (dpm/100cm²) Removable (dpm/100cm²) 30 cm 30 cm 1 Meter 1 Meter (dpm/100cm²) Contact TA21-2015-00105 5/20/2015 @ 1600 TA-21 Building 387 Removable + beta/gamm Surveyor: Floor - T2 0.0 14.0 14.0 3.4 109.0 112.4 NDA Location: TA-21 Building 387 2 0.0 0.0 0.0 7.0 232.0 239.0 N/A B. Bonser / J. Luna Floor Equipment 2.5 42.0 44.5 0.0 126.0 126.0 N/A 3 Floor Survey Type: Routine Material Release East Wall Interior 1.2 14.0 15.2 0.6 N/A 4 0.6 0.0 Pre-Job RWP Material Receipt 4.9 NDA 5 North Wall Interior - T3 0.0 3.0 3.0 4.9 0.0 Post-Job RWP Vehicle Release 1.4 N/A 6 West Wall Interior 0.0 0.0 0.0 1.4 0.0 RMI Vehicle Receipt 0.0 0.0 0.1 0.0 0.1 N/A West Wall Interior 0.0 Characterization Survey N Drums 3.0 N/A 8 South Wall Interior 1.3 4.3 1.5 0.0 1.5 Contamination Radiation 1.2 1.2 0.0 N/A 9 South Wall Interior 0.0 0.0 0.0 Characterization Survey of NDA 0.0 8.0 8.0 0.0 0.0 0.0 10 East Wall Interior - T4 TA-21 Building 387 0.0 0.0 0.0 0.0 N/A East Wall Interior 0.0 0.0 11 12 Ceiling 1.3 3.0 4.3 0.7 0.0 0.7 N/A Tritium smear #1 is blank. 13 West Wall Interior 0.0 0.0 0.0 0.4 0.0 0.4 N/A 'T#' in the 'Location' column indicate the 0.0 N/A 14 West Wall Interior 0.0 14.0 14.0 0.0 0.0 tritium smear # also taken at this sample location. 0.0 0.0 NDA 15 Ceiling - T5 8.0 0.0 0.8 0.0 16 Ceiling 0.0 14.0 0.0 0.0 0.0 N/A 14.0 Completed a 10% Scan of all accessible surfaces. 17 0.0 0.0 0.0 0.0 0.0 0.0 N/A Ceiling Instrument P/N # Cal Due Bkgd MDA units 18 25.0 2.5 2.5 N/A Door 0.0 25.0 0.0 E600 9/29/2015 12013 19.2 47 a dpm 19 East Wall Exterior 0.0 31.0 31.0 0.2 0.0 0.2 N/A SHP380AB 12864 4/9/2016 1320 283 βdpm 20 East Wall Exterior - T6 0.0 14.0 14.0 5.2 0.0 5.2 NDA N a dpm East Wall Exterior 0.0 N/A 21 1.0 14.0 15.0 0.0 0.0 5.2 5.2 βdpm 22 East Wall Exterior 0.0 14.0 14.0 0.0 N/A N/A 1.1 25.0 26.1 2.1 0.0 2.1 N/A 23 North Wall Exterior Α N/A 4.1 3.0 7.1 10.8 N/A 24 North Wall Exterior 10.8 0.0 N/A 42.0 42.0 0.0 0.0 0.0 25 West Wall Exterior 0.0 See attached data sheets 26 West Wall Exterior 1.2 19.0 20.2 0.0 0.0 0.0 N/A 27 South Wall Exterior 0.0 36.0 36.0 1.0 0.0 1.0 N/A 0.0 N/A 28 South Wall Exterior 0.0 31.0 31.0 0.0 0.0 260.0 261.2 245.0 246.0 NDA 29 Roof- south side - T7 1.2 1.0 Α RCT Signature: 30 Roof - south side - T8 2.8 290.0 292.8 177.0 180.1 NDA 3.1 31 Roof - north side - T9 0.0 383.0 383.0 0.0 204.0 204.0 NDA Supervisor: L. Priester / B. Mclean 296.0 297.6 N/A 32 Roof - north side 1.3 338.0 339.3 1.6 Roof Top - T10 0.0 377.0 377.0 0.0 378.0 378.0 NDA 33 Signature 289.0 289.2 34 4.1 288.0 292.1 0.2 N/A Roof Top 35 N/A N/A N/A N/A N/A N/A N/A End of Survey Α

	ontaninalic	iiii\auiatioii	our vey i	Report 2015 (Cor	15,114461911/				
vey Number:	Date/Time:	20/2015 @ 1600		Comments:					
TA21-2015-00105	Surveyor:	.0,2010 @ 1000		1	TA-21 Bu	uilding 387	Characteriz	ation Survey	
TA-21 Building 387		Bonser / J. Luna							
	î	West Wall		7					
TA-21 Building 387									
Interior	14)	13					i ė		
meerior									
N									
→	7		6						
(8)	2		3						
			- F					16	
/all					Non				T5
South Wall		Floor			North Wall		17)	Ceiling	15
ις.					=				
9				(S) T3		12			
		(1) ^{T2}	.27						
		(1)							ļ
		18)							
	T4		4						
	10								
	_								
		East Wall							

e F	Contamination/Radiation Su	rvey Report 2015	(Continuation)	
Survey Number:	Date/Time:	Comments:		
TA21-2015-00105	5/20/2015 @ 1600			
Location:	Surveyor:		TA-21 Building 387 Characterization Survey	
TA-21 Building 387	B. Bonser / J. Luna			

TA-21 Building 387 West Wall Exterior 26) 25) 33 27 77_29 24 32 Roof (31)^{T9} 28 23) 34) ②0 _{T6} 21 19 (22)

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg:387	Date: 05/22/15	Email: bbonser@lanl.gov
Room: N/A	Analyst: HOMAN VICTORIA M	
Priority: Routine		

Comments:

Results not adjusted for energy, attenuation, or yield unless noted.

3 1 1 5 3	ن *	3 1 5 5 b	2 3 5 5 1 2	n D T	<u>.</u> >	B P C D	Beta
Activity	sigma	MDA	MDA	Activity	sigma	MDA	MDA
(dpm)	(dpm)	(dpm)	FLAG	(dpm)	(dpm)	(dpm)	Flag
0.0	246.4	6.2		3.4	3.1	10.8	
0.0	251.3	5.3	C.	7.0	3.4	10.2	
2.5	2.0	6.4		0.0	166.0	12.5	
1.2	1.4	O		0.6	2.7	11.3	
0.0	259.2	7.1		4.9	3.6	12.3	
0.0	253.0	5.8		1.4	2.9	11.2	
0.0	258.5	6.1		0.1	2.6	10.9	
1.3	1.4	5.3		1.5	2.8	10.8	
1.2	1.4	5.7		0.0	163.1	11.9	
0.0	272.2	6.2		0.0	166.2	12	
0.0	246.4	6.2		0.0	158.5	10.8	
1.3	1.4	σ. ω		0.7	2.5	10.2	
0.0	257.8	6.4		0.4	3.1	12.5	
0.0	259.4	σ		0.0	173.4	11.3	
0.8	1.4	7.1		0.0	174.1	12.3	
0.0	253.0	5.8		0.0	162.9	11.2	
0.0	258.5	6.1		0.0	155.2	10.9	
0.0	256.9	5.3		2.5	2.9	10.7	
0.0	251.0	5.7		0.2	2.9	11.9	
0.0	272.2	6.2		5.2	3.6	12	
1.0	1.4	6.2		0.0	158.5	10.8	
0.0	251.3	σ. ω		5.2	3.2		
1.1	1.4	6.4		2.1	3.4	12.5	
4.1	2.5	6		10.8	4.2	11.3	
0.0	259.2	7.1		0.0	174.1	12.3	
1.2	1.4	5.8		0.0	162.9	11.3	
0.0	258.5	6.1		1.0	2.7	10.9	
0.0	256.9	5.3		0.0	157.9	10.7	
1.2	1.4	5.7		1.0	3.0	11.9	
2.8	2.1	6.2		3.1	3.4	12	
0.0	246.4	6.2		0.0	158.5	10.8	
1.3	1.4	5. u		1.6	2.7	10.2	
0.0	257.8	6.4		0.0	166.0	12.5	
4.1	2.5	O		0.2	2.8	11.3	
	Alpha Activity (dpm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	pha ivity	pha 2* ivity sigma 246.4 6. 259.2 7. 259.2 7. 272.2 6. 273.6 6. 274.4 6. 275.8 6. 277.8 6. 277.8 6.	pha 2* Alpha ivity sigma MDA ivity sigma MDA 246.4 6.2 251.3 5.3 2.0 6.4 1.4 6 259.2 7.1 253.0 5.8 258.5 6.1 1.4 5.7 272.2 6.2 246.4 6.2 1.4 5.3 257.8 6.4 259.4 6 1.4 7.1 258.5 6.1 258.5 6.1 258.5 6.1 258.5 6.1 258.5 6.1 258.5 6.1 258.5 6.1 258.5 6.1 259.2 7.1 1.4 5.3 1.4 5.3 1.4 5.3 1.4 5.3 1.4 5.3 259.2 7.1 1.4 5.8 258.5 6.1 259.2 7.1 1.4 5.8 258.5 6.1 259.2 7.1 1.4 5.8 258.5 6.1 259.2 7.1 1.4 5.8 258.5 6.1 259.2 7.1 1.4 5.8 258.5 6.1 259.2 7.1 259	pha 2* Alpha Alpha ivity sigma MDA MDA MDA MDA FLAG ipm) (dpm) (dpm) (dpm) 246.4 6.2 251.3 5.3 2.0 6.4 1.4 6.2 272.2 7.1 272.2 6.2 246.4 6.2 246.4 6.2 246.4 6.2 259.4 6.4 259.4 6.1 1.4 7.1 253.0 5.8 255.8 6.1 1.4 7.1 253.0 5.8 255.5 6.1 255.6 6.1 255.6 6.1 255.6 6.1 255.6 6.1 255.6 6.1 255.6 6.1 255.6 6.1 255.6 6.1 256.9 5.3 1.4 6.2 251.3 5.3 1.4 6.4 2.5 6.1	pha 2* Alpha Alpha Beta ivity sigma MDA MDA Activity sigma MDA MDA Activity sigma MDA MDA Activity sigm) (dpm) (dp	pha 2* Alpha Alpha Beta 2* ivity sigma MDA MDA Activity sigma 246.4 6.2 3.4 3.1 10 251.3 5.3 7.0 0.6 4.9 0.6 2.7 11 258.5 6.1 1.4 5.3 0.0 166.2 11 246.4 6.2 0.0 166.2 11 1.4 5.3 0.0 166.2 11 257.8 6.4 0.0 0.0 163.1 11 259.4 6 0.0 0.0 158.5 11 1.4 7.1 0.0 0.0 158.5 11 259.4 6 0.0 0.0 173.4 11 259.5 6.1 0.0 0.0 173.4 11 259.5 6.1 0.0 0.0 173.4 11 259.5 6.1 0.0 0.0 173.4 11 259.6 5.3 0.0 0.0 173.4 11 259.7 0.0 0.0 173.4 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 12.5 2.9 11 259.8 5.3 0.0 155.2 11 259.8 5.3 0.0 155.2 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.3 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11 259.8 5.4 0.0 158.5 11

Sample Description	Analysis Information	Contact Information
Login Date: 05/22/15	Instrument: TA3TC3	Name: BONSER BRYAN H
Sample Type: Trit. Smear	Analysis: Liquid Scint.	Phone: -
Location TA:21 Bldg:387	Date: 05/22/15	Email: bbonser@lanl.gov
Room: N/A	Analyst: GARCIA FRANCISCO L	

Priority: Routine Comments:

Sample	Alpha	2 *	H-3 Beta Activity	2*	Total Beta Activity	2* sigma
		(0)	(dom)	1/0	(dpm)	9/0
	(mgm)	(6)	(1000)		H	
ь	NDA	NDA	NDA	NDA	NDA	NDA
2	NDA	NDA	NDA	NDA	NDA	NDA
ω	NDA	NDA	NDA	NDA	NDA	NDA
4	NDA	NDA	NDA	NDA	NDA	NDA
σ	NDA	NDA	NDA	NDA	NDA	NDA
6	NDA	NDA	NDA	NDA	NDA	NDA
7	NDA	NDA	NDA	NDA	NDA	NDA
00	NDA	NDA	NDA	NDA	NDA	NDA
9	NDA	NDA	NDA	NDA	NDA	NDA
10	NDA	NDA	NDA	NDA	NDA	NDA

Contamination/Radiation Survey Report 2015

RWP N			N/A			_	Wastewater Tre					Beta		Tritium	-	-		Rate	*	
Survey Number	r:	Date/Time:				Item	Location		Alpha	Total		Deta	Total	madin			(mre			_
TA21-2015	-00106	5/21/	/2015 @	1500		#	TA-21 Wastewater Sumps	Removable (dpm/100cm²)	Direct (dpm/100cm²)	(dpm/100cm²) Removable + Direct	Removable (dpm/100cm²)	Direct (dpm/100cm²)	(dpm/100cm²) Removable + Direct	Removable (dpm/100cm²)	Contact beta/gamma	Contact neutron	30 cm beta/gamme	30 cm neutron	1 Meler beta/gamme	1 Mete neutro
ocation:		Surveyor:				1	N, Sump - north wall	0.0	80.0	80.0	0.0	900.0	900.0	N/A			•			-
TA-21 Wastewa	ater Sumps	B. Bo	onser / J	J. Luna		2	N. Sump - west wall - T2	0.0	24.0	24.0	0.0	_429.0	429.0	NDA						-/
urvey Type:		Equipmen	nt			3	N. Sump - south wal	2.3	47.0	49.3	5.8	469.0	474.8	N/A						-
Routine		Material F	Release			4	N, Sump - east wall	0.0	N/A	0.0	6.1	N/A	6.1	N/A						/
Pre-Job RV	٧P	Material F	Receipt			5	N. Sump - metal pipe	2.5	N/A	2.5	2.9	N/A	2.9	N/A						<i>Y</i> —
Post-Job R	WP	Vehicle R	Release			6	N. Sump - tile pipe - T3	1.2	4.0	5.2	0,0	466.0	466.0	NDA					+	
RMI		Vehicle R	Receipt			7	N. Sump - ladder	0.8	N/A	0.8	0.0	N/A	0.0	N/A					 	
Drums		Characte	rization S	urvey		8	N. Sump - metal cover	4.0	53.0	57.0	0.0	0.0	0.0	N/A		N			<u> </u>	
Contamina	ation		Radiatio	n		9	N, Sump - metal cover	4.0	83.0	87.0	0.0	0.0	0.0	N/A					$\vdash \leftarrow$	
Characterizat	ion Survey	/ of				10	N. Sump - monitor box	0.0	30.0	30.0	8.7	0.0	8.7	N/A					├	-
TA-21 Wast	ewater Su	mps				11	S. Sump - concrete wall	0.0	N/A	0.0	0.0	N/A	0.0	N/A					<i>Y</i>	
						12	S. Sump - concrete wall	2.8	N/A	2.8	1.2	N/A	1.2	N/A				/	1	_
ritium #1 is a	a blank.					13	S. Sump - concrete wall	0.0	N/A	0.0	1.7	N/A	1.7	N/A				/		-
T#' in the 'Lo	cation' co	lumn indicat	es the			14	S. Sump - concrete wall	0.0	N/A	0.0	0.0	N/A	0.0	N/A						_
tritium smea	ır#also ta	ken at this s	ample l	ocation	2	15	S. Sump - concrete wall	1.1	N/A	1.1	0.0	N/A	0.0	N/A						_
						16	S. Sump - concrete wall	1.2	N/A	1.2	1.5	N/A	1.5	N/A						
Completed a	10% Scan	of all acces	sible su	ırfaces.		17	S. Sump - concrete wall - T4	2.3	N/A	2.3	0.0	N/A	0.0	NDA				/		
Instrument	P/N #	Cal Due	Bkgd	MDA	units	18	S. Sump - concrete wall	0.0	N/A	0.0	1.4	N/A	1.4	N/A				1		
E600	12502	11/12/2015	5.7	33	α dpm	19	S, Sump - metal trough	6.5	N/A	6.5	33.6	N/A	33.6	N/A						
SHP380AB	13404	12/12/2015	1260	277	βdpm	20	S. Sump - rusty vent cover - T5		482.0	482.0	0.0	1328.0	1328.0	NDA						
E600	12471	9/29/2015	15.4	44	a dpm	21	S. Sump - panel door	0.0	71.0	71.0	0.0	0.0	0.0	N/A						
SHP380AB	13776	2/17/2016	1414	292	βdpm	22	S. Sump - metal cover	0.0	53.0	53.0	4.3	96.0	100.3	N/A			1/			
N	10770	271172010			N/A	23	S. Sump - concrete top	0.0	47.0	47.0	1.7	67.0	68.7	N/A			/			
			A		N/A	24	End of Survey	N/A	N/A	N/A	N/A	N/A	N/A	N/A			1			
			- / -			25	Life of ourvey	1 10.7	1077	1,071	1									
See attached da	ata cheete					26														
see attached of	A alla silects.					27		1	N	-										i.a.
	Ω			1	/				 '`							1			-	
	(//		1/1/	11/		28										/			A	
OT 0:	1/5	32	/////	N		29										1				
RCT Signature:	11/10		1117		-	30		-		-	/					1				
Cupania	0	Brigator / B	Mologr			31		-	-	//				1	 				E	
Supervisor:	1)/\	Priester / B.	iviciean		-	32		-	 	1	+				1/					
61	V() _		1) , (33		+	+/	+	 	Α.	-		 / 					
Signature	7/2	0	W,	W,	70	34		+	\leftarrow	_	-	A	1	+-+-	1/		1		1	
	/					35		1/			-		-	\vdash	X		_		+	
	98.1					36	I 🔻		1							_			vey inform	-

	Contamination/Radiation Su	rvey Report 2015 (Continuation)
Survey Number:	Date/Time:	Comments:
TA21-2015-00106	5/21/2015 @ 1500	
Location:	Surveyor:	TA-21 Wastewater Treatment Sumps Characterization Survey
TA-21 Wastewater Sumps	B. Bonser / J. Luna	

TA-21 Wastewater Sumps _____

HPAL ANALYSIS REPORT

FILE: 29165400

Sample Description	Analysis information	Contact Information
Login Date: 05/22/15	Instrument: Bertl 2010/143 Name: BONSER BRYAN H	Name: BONSER BRYAN H
Sample Type: TWSR	Analysis: GrossAB	Phone: -
Location TA:21 Bldg: Wastewa Date: 05/22/15	Date: 05/22/15	Email: bbonser@lanl.gov
Room: Sumps ter	Analyst: HOMAN VICTORIA M	
Priority: Routine Ttmt		

Priority: Routine Comments:

Results not adjusted for energy, attenuation, or yield unless noted.

Sample	Alpha	N *	Alpha	Alpha	Beta	2 *
ID	Activity	sigma	MDA	MDA	Activity	sigma
	(dpm)	(dpm)	(dpm)	FLAG	(dpm)	(dpm)
Р	0.0	251.0	5.7		0.0	163.1
N	0.0	272.2	6.2		0.0	166.2
ω	2.3	1.9	6.2		5.8	3.4
44	0.0	251.3	5.3		6.1	3.3
ы	2 5	2.0	6.4		2.9	3.5
თ	1.2	1.4	თ		0.0	173.4
7	0.8	1.4	7.1		0.0	174.1
ω	4.0	2.4	5.8		0.0	162.9
9	4.0	2.5	6.1		0.0	155.2
10	0.0	256.9	5.3		8.7	3.7
11	0.0	251.0	5.7		0.0	163.1
12	2.8	2.1	6.2		1.2	3.1
13	0.0	246.4	6.2		1.7	2.8
14	0.0	251.3	5.3		0.0	158.2
15	1.1	1.4	6.4		0.0	166.0
16	1.2	1.4	6		1.5	2.9
17	2.3	2.0	7.1		0.0	174.1
18	0.0	253.0	5.8		1.4	2.9
19	6.5	3.1	6.2	٧	33.6	6.1
20	0.0	256.9	5.3		0.0	157.9
21	0.0	251.0	5.7		0.0	163.1
22	0.0	272.2	6.2		4.3	3.5
່))				1	כ

Sample Description	Analysis Information	Contact Information
Login Date: 05/29/15	Instrument: TA3TC3	Name: PRIESTER LEROY JR.
Sample Type: Trit. Smear	Analysis: Liquid Scint.	Phone: 500-7373
Location TA:21 Bldg:n/a	Date: 06/01/15	Email: lpriesterjr@lanl.gov
Room: north and	Analyst: CHAVEZ MELISSA F	

southsumps
Priority: Routine
Comments:

Samole	Alpha	22 *	H-3 Beta	2*	Total Beta	2*
ᆸ.	Activity	sigma	Activity	sigma	Activity	sigma
	(dpm)	%	(dpm)	0/0	(dpm)	(%)
ц	NDA	NDA	NDA	NDA	NDA	NDA
23	NDA	NDA	NDA	NDA	NDA	NDA
ω	NDA	NDA	NDA	NDA	NDA	NDA
44	NDA	NDA	NDA	NDA	NDA	NDA
υī	NDA	NDA	NDA	NDA	NDA	NDA

Sample Description	Analysis Information	Contact Information
Login Date: 05/27/15	Instrument: LOAX-2	Name: BONSER BRYAN H
Sample Type: Soil/Solid	Analysis: Isotopic	Phone: -
A:21 Bldg:	Date: 05/27/15	Email: bbonser@lanl.gov
Priority: Routine	THE TYPE CONTRACTOR AT COMMENT OF	
Comments:		

	CO.
	ក្តា
	₿
	ნ.
	Ĕ
	\D
	н
	Ð
	0
	ĸ
	Ď
	m
	ö
	н
	Ε.
	ř
	j
	2
	Þ
	••
	\mathbf{r}
	bri
	co
	CT
	Sample ID or Description: 1. Estimated
	CT
	0
	24
	ω
	C
	Ξ.
	4
	3-4-
	5
	850
	1995
	되
	a
	p.
	D
	ID.
	ct
	0
	TO.
	0
	Œ
	8
	200
	1
	ct
i	Þ
	m
	1510
	,T
	7
	Unable to see Pu in this type
	0f
	to .
	22
	5
	1
	0
	196
	46

Am-241		Name	Isotope
6.94E+01	(dpm)		Activity
7.62至+00	(dpm)	sigma	2*
4.09E+00	(dpm)		ACIM

HPAL ANALYSIS REPORT

FILE: 29164378

Room: sump Location TA:21 Bldg:n/a Login Date: 05/29/15 Sample Description Sample Type: Liquid Date: Analyst: HOMAN VICTORIA M Analysis: Isotopic Instrument: LOAX-1 Analysis Information 06/02/15 Name: PRIESTER LEROY Email: lpriesterjr@lanl.gov Phone: 500-7373 Contact Information JR.

Priority: Routine

Comments:

in this type of sample (soil/sludge). Sample ID or Description: 1. Analysis modified. Estimated activity. Could not detect Pu

	,			
	Name		sigma	
		(dpm)	(dpm)	(dpm)
North Samp Am-241	Am-241	2.00E+01	2.00E+01 2.52E+00	3.49至+00

HPAL ANALYSIS REPORT

FILE: 29164378

Sample Description Room: sump Location TA:21 Bldg:n/a Sample Type: Liquid Login Date: 05/29/15 Analyst: HOMAN VICTORIA M Analysis: Isotopic Instrument: LOAX-2 Analysis Information 06/02/15 Phone: 500-7373 Name: PRIESTER LEROY JR. Email: lpriesterjr@lanl.gov Contact Information

Priority: Routine

Comments:

Sample ID or Description: 2. Analysis modified.

NDA	NDA	NDA	NONE-	South Sump
(dpm)	(dpm)	(dpm)		
j.	sigma		Name	
MDA	2*	Activity	Isotope	

Sample Description	Analysis Information	Contact Information
Login Date: 05/29/15	Instrument: LOAX-2	Name: PRIESTER LEROY JR.
Sample Type: Liquid	Analysis: Isotopic	Phone: 500-7373
Location TA:21 Bldg:n/a	Date: 06/02/15	Email: lpriesterjr@lanl.gov
Room: sump	Analyst: HOMAN VICTORIA M	
Priority: Routine		
Comments:		

Sample ID or Description: 3. Analysis modified.

	Isotope Name	Activity	2* sigma	MDA
		(dpm)	(dpm)	(dpm)
South Sump	NONE-	NDA	NDA	NDA

スプート	7
Ż	<u>د</u>
₹	5
בֿיַ	_
V	מ
- 0/	ח
HPALIKUL DAIVIPLE DUDIVIII I AL I	7 7 2
7	J
C	ח
O	U
3	2
=	
ļ	2
2	2
12	7

☐ Continuation			ii.		>	3/2013
						10
						9
						∞
						7
						6
	- [5
)][:					4
						3
				,		2
	<u>ן</u>			•:		1
Date	Respirator	Group	Z Number		Name	
	Routine Special	Type:		EAR	NASAL SMEAR	
						10
						9
						00
						7
						σ (
						л.
						4
						w N
) H
Tillie Tillow Note (iii)	Date	Flow Rate	lime	Date		
Flow Rate Ru	7	The state of the s	Sample On)	Location	Lo
□lpm	☐ cfn	Flow Rate Units:	Ŧ	CHARCOALS	CAM FILTER/AIR SAMPLES/CHARCOALS	
						Сп
						4
						7 u
it Sump South	TA21 Wastewater Treatment Sump South	TA21 Was		@ 1500	5-21-2015 @ 1500	
it Sump North	TA21 Wastewater Treatment Sump North	TA21 Was		@ 1500	Date/Time 5-21-2015 @ 1500	Sample ID 1-10
		OTHER	SMEARS/LIQUID/OTHER			
	tritium	- ≥ 400K dpm	beta/gamma, or	າa, ≥ 100K dpm	Any Samples with \geq 20K dpm alpha, \geq 100K dpm beta/gamma, or \geq 400K dpm tritium	Any Samples
⊠dpm ∐μCi ☐nCi ☐dpm/m3 ☐μCi/L ☐pCi/g	⊠dpm ∐μCi [or list type	3) STC Type: None or list type 4) Describe:
	Reporting Units:		□alpha □beta ⊠α/β	🔲 alpha	n): <1000	2) Field Screen (dpm):
					Pu, U	1) Isotope(s):
						Source Std. (1)
						Leak Test (1)
						Isotopic (1,2)
N/A						LSC
		ar (4)	Charcoal Smear	Liquid (3)	NuCon Filter (3)	Gross α/β Nι
RWP No:	Comments/RPO RWP No:		mation if needed)	de additional infor	Sample Type & Analysis (Check Box and provide additional information if needed) Air Smear Filter N:	Sample Type & Ana
				L. Priester 505-500-7373	L. Priest	Phone/Page/Email:
7		16	z No: 259816		L. Priester	Contact Name:
29165400						Signature:
		354	Z No. 269854		Bidg: Surrips	TA:
ומכאווא ואמוווסכו			No. of Samples:	Į	Į	e/Time:
Emergency	Priority	23			1500	

3/2013

ı	_	
l	ᆽ	
l	τ	1
l	ıĩ	
۱	N	Ì
l	_	
l	4	
l	τ	7
l	E	9
ı	7	
ı	٠.	•
ı	ス	7
١	U	7
ı	ř	
ı	L	
۱	۲	
I	F	
۱	7	
ı	=	
ı	τ	
١		
١	П	
I	14	
ı	\simeq	
I	_	
١	O	
I		7
١	2	1
۱		
ı	Т	
1		
ı	J	
ı		
١	-	
١	KT-2 HTAL: KUL VAIVITLE UUDIVIII I AL FUNIV	
1	C	
١	Z	Ų
I	7	j
1	5	•

10	٥	00	7	6	5	4	ω	2	1			10	9	8	7	6	5	4	3	2	1	Location	CAM F	5					Sample ID		Any Samples wi	3) STC Type: None or list type 4) Describe:	2) Field Screen (dpm):	1) Isotone(s):	Source Std. (1)	Leak Test (1)	Isotopic (1,2)	LSC	Gross α/β	NuCor	Sample Type & Analysi	Phone/Page/Email:	Contact Name:	Signature:	Submitter:	TA: 21	Date/Time: 5-2
										Name	NASAL SMEAR								×			on Date	CAM FILTER/AIR SAMPLES/CHARCOALS	5-29-2015 @ 1000	5-29-2015 @ 1000	5-29-2015 @ 1000	5-29-2015 @ 1000	5-29-2015 @ 1000	Date/Time		ith ≥ 20K dpm alpha, ≥ 100K dp	st type	alpha	Pu U.H3						Air Smear Filt	Sample Type & Analysis (Check Box and provide additional information if needed) H-3 Air H-3 Air	L. Priester 505-500-7373	L. Priester	1	B. Bonser	Bldg: Wastewater	5-29-2015 @ 1000
										Z Number Group	Type:											Time Flow Rate	1							SMEARS/LIQUID/OTHER	Any Samples with \geq 20K dpm alpha, \geq 100K dpm beta/gamma, or \geq 400K dpm tritium		ha \square beta $\square \alpha/\beta$							er Nasal Other Charcoal Smear (4)		373	Z No: 259816		Z No: 269854	Room: Sump	No. of Samples:5
											Routine Special											Date Time Flow Rate	□ cfr	th sump vent ripe cover	South sump Floor	North Sump Floor	North Sump West Wall	Blank	Description	,	tritium	⊠dpm ☐μCi ☐nCi ☐dpm/m3 ☐μCi/L ☐pCi/g	Reporting Units:				# - Iv a Clair.	#1 :: o b o b			Comments/RPO RWP No:	1000	29164377		RP Tracking Number	Tracking Number	Priority Emergency
										Time				-								H	Run Time									:i/L□pCi/g						5									ency

3/2013

☐ Continuation

4207 WN WNH 5 w 10 ∞ 9 ∞ 6 4 N 9 10 2) Field Screen (dpm):3) STC Type: None or list type4) Describe: Contact Name: Submitter: Date/Time: Sample Type & Analysis (Check Box and provide additional information if needed) Phone/Page/Email: 1) Isotope(s): Gross α/β Source Std. (1) Leak Tost (1) Isotopic (1,2) Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium Sample ID CAM FILTER/AIR SAMPLES/CHARCOALS Location Name 5/22/2015 Air Pu Am Bryan Bonser Bldg: _ 4 Leroy Priester NASAL SMEAR RP-2 HPAL:RSL SAMPLE SUBMITTAL FORM 21.1500 Smear (3) WW Trtmt H-3 Date/Time Liquid ∐alpha Date H-3 Air Filter (3) Room: No. of Samples: Z No: Z No: SMEARS/LIQUID/OTHER □beta Z Number Sample On Time Sumbs □α/β Nasal Smear 269854 Flow Rate Units: Flow Rate Type: Group Other (4) Cort Routine Comments/RPO RWP No: **Reporting Units:** □dpm □μCi □nCi □dpm/m3 □μCi/L □pCi/g Date Respirator Sump Description Priority - او او او او او او او او Special _l cfm Sample Off Clay Warth Sump Tracking Number Time Date | lpm Flow Rate Emergency Time Run Time (hs)

☐ Continuation

RP-2 HPAL:RSL SAMPLE SUBMITTAL FORM

10	9	8	7	6	5	4	ω	2	1	7		10	9	∞ .	7	6	л	4	ωl	2	-	Location	CAM FILT	5	4	3 4	2 2-3	1	Sample ID	Any Samples with	4) Describe:	2) Field Screen (dpm):		Source Std. (1)	Leak Test (1)	Isotopic (1,2)	LSC.	Gross α/β	NuCon	Sample Type & Analysis (Phone/Page/Email:	Contact Name:	Signature:	Submitter:	TA: 21	Date/Time: 5-29-
										Name	NASAL SMEAR											Date	CAM FILTER/AIR SAMPLES/CHARCOALS			5-29-2015 @ 1000	5-29-2015 @ 1000	5-29-2015 @ 1000	Date/Time	≥ 20K dpm alpha, ≥ 100K d	type	□alpha	Pu. Am. U. H3						Air Smear Filter N: NuCon Filter (3) Liquid (3) Charcoal Sn	Check Box and provide additional i	L, Priester 505-500-7373	L. Priester		B. Bopser	Bldg: WW Sumps	5-29-2015 @ 1000
										Z Number Group	Туре:							F1				e Time Flow Rate							SINIEARS/LIQUID/OTHER	Any Samples with ≥ 20K dpm alpha, ≥ 100K dpm beta/gamma, or ≥ 400K dpm tritium		pha 🔲 beta 🔲 α/β							lter Nasal Other (3) Charcoal Smear (4)	information if needed)	7373	Z No: 259816		Z No: 269854	Room: N/A	No. of Samples:4
										Respirator Date	Routine Special											Sample Off Sample Off Flow Rate	cfn			Building 227 Sump	S Sump	N Sump	Description	om tritium	⊠dpm ∐μCi □nCi □dpm/m3 □μCi/L□pCi/g	Reporting Units:								Comments/RPO RWP No:		29164378			DD Tracking Number	Priority Emer
										Time												ate (hr)	Dis Timo								ıCi/L□pCi/g													_ `	אר י	Emergency

☐ Continuation

						Co	ntamination/F	Radiat	ion Si	urvey	Repo	ort 20	015								
RWP NU	JMBE	R:	N/A		TA-	-21	Building 227 Ir	nterior	Part 2	Char	acter	izatio	n Sur	vey					Surve	y Form Re	vision 0
Survey Number:	:	Date/Time:				Item	Location	Code		Alpha			Beta		Tritium				Rate m/hr)	241	
TA21-2015	5-00302	10/14	l/2015 @	2) 14:00	0	#	TA-21 Building 227 Interio	or	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable +	Removable (dpm/100cm²)	Direct (dpm/100cm²)	(dpm/100cm²) Removable +	Removable (dpm/100cm²)	Contact beta/gamma	Contact neutron	30 cm bela/gamma	30 cm neutron	1 Meler bela/gamma	1 Mater neutron
Location:	Part -2	Surveyor:				1	Insulation	MISC	0.0	0.0	0.0	0.0	0.0	0.0	N/A						
TA-21 Build	ling 227	Mi	ims / Wi	nder		2	Wood	PW	2.7	0.0	2.7	1.5	86.0	87.5							/
Survey Type:		Equipme	nt			3	Wood	PW	0.0	0.0	0.0	0.0	0.0	0.0							/
Routine		Material F	Release			4	Insulation	MISC	0.0	0.0	0.0	2.7	147.0	149.7							/
Pre-Job RW	/P	Material I	Receipt			5	Insulation	MISC	0.8	0.0	0.8	0.0	277.0	277.0							/
Post-Job RV	N P	Vehicle F	Release			6	Insulation	MISC	0.0	0.0	0.0	0.0	0.0	0.0							/
RMI		Vehicle F	Receipt			7	Insulation	MISC		0.0	0.0	0.0	0.0	0.0						1	1
Drums		Characte	erization S	Survey		8	Insulation	MISC	1.3	11.0	12.3	0.6	0.0	0.6			N			/	
						9	Insulation	MISC	0,0	15.0	15.0	0.0	0.0	0.0						_/_	
Contaminat	tion		Radiatio	on		10	Insulation	MISC	0.0	0.0	0.0	3.4	0.0	3.4						$\bot \angle$	
Characterization	on Survey	of				11	Insulation	MISC	0.0	0.0	0.0	1.7	0.0	1.7						1/	
TA-21 Buildin	ng 227 Inte	erior				12	Insulation	MISC	1,3	7.0	8.3	1.6	0.0	1.6						V	
						13	Insulation	MISC	0.0	0.0	0.0	0.0	0.0	0.0					 ,	4	
						14	Wood	PW	0.0	1.0	1.0	2.7	0.0	2.7	- 14				1		
						15	Insulation	MIS	0.0	0.0	0.0	0.0	144.0	144.0							
						16	Plexiglass	PL	0.0	6.0	6.0	0.0	0.0	0.0					\perp / \perp		ļ
						17	Plexiglass	PL	0.0	0.0	0.0	1.0	125.0	126.0					1/_		
Completed a	10% Scan	of all accesi	ble surfa	ices.		18	Insulation	MIS	0.0	7.0	7.0	1.7	128.0	129.7					/		
Instrument	P/N #	Cal Due	Bkgd	MDA	units	19	Insulation	MIS	1.2	0.0	1,2	0.0	63.0	63.0					1		
E600	12527	5/13/2016	21.6	63	α dpm	20	Insulation	MIS	1.3	0.0	1.3	9.7	0.0	9.7				1			
SHP380AB	13784	6/5/2016	1349	397	βdpm	21	Insulation QA - 4	MIS	0.0	16.0	16.0	0.5	105.0	105.5							
E600	181951	8/25/2016	20.1	62	a dpm	22	Insulation QA - 5	MIS	0.0	25.0	25.0	0.1	150.0	150.1							
SHP380AB	184322	7/10/2016	853	319	βdpm		N/A														
N					N/A													1/			
	-		Α		N/A					L								X			
										N			1				1	/			
See attached da	ata sheets.																				
		,		5							1										
		6	1		-															Α	
RCT Signature:	Dennis M	lims /	1	_									Α				X				
					-				1								/				
Supervisor:	:	L. Priester / B.	Mclean					1													
		~																			
Signature	B	TAN												011							
1																1					

Coi	ntamination/Radiation Survey F	Report 2015 (Continuation)
Survey Number:	Date/Time:	Comments:
TA21-2015-00302	10/14/2015 @ 14:00	
Location:	Surveyor:	TA-21 Building 227 Interior Part 2 Characterization Survey
TA-21 Building 227 Interior	Mims / Winder	

_____ FILE: 29060673

Sample Description

Analysis Information Contact Information

Login Date: 10/15/2015 08:57 Instrument: Bert1 2010/143 Name: Ricci Appuglise

Sample Type: TWSR

Location: TA-21/227 Room: INTERIOR

Priority: Routine

Analysis: GrossAB Phone: Date: 10/20/2015 13:55 Page/Cell: 303-903-7277
Analyst: 151086 e-mail: -

Results not adjusted for energy, attenuation, or yield unless noted. ______

ID Activity Si # (dpm) (control of the control of t	igma MDA	Alpha Beta MDA Activity Flag (dpm) 0.0 1.5 0.0 2.7 0.0 0.0 0.0 0.6 0.0 3.4 1.7 1.6 0.0 2.7 0.0 0.0 1.7 0.0	sigma (dpm)	Beta Beta MDA MDA Flag 10.8 10.2 12.5 11.3 12.3 11.2 10.9 10.8 10.2 12.5 11.3 12.0 10.8 10.2 12.5 11.3 12.3 11.2 10.9 10.7 11.9
--	----------	--	---	---

FILE: 29060674

Sample Description

Analysis Information

Contact Information

Login Date: 10/15/15

Instrument: Bertl 2010/143 Name: MIMS DENNIS O

Sample Type: TWSR

Analysis: GrossAB

Phone: -

Location TA:21 Bldg: 227

Date: 10/16/15 Email:

Room: Interior

Analyst: TRUJILLO ISAAC B

Priority: Routine

Comments:

Results not adjusted for energy, attenuation, or yield unless noted. Save Sample

Sample ID	Alpha Activity	2* sigma	Alpha MDA	Alpha MDA	Beta Activity	2* sigma	Beta MDA	Beta MDA
	(dpm)	(dpm)	(dpm)	FLAG	(dpm)	(dpm)	(dpm)	Flag
20	1.3	1.5	6.2		9.7	4.2	12	

FILE: 29060680

Sample Description

Analysis Information Contact Information

Location: TA-21/227
Room: interior

Priority: Routine

Login Date: 10/19/2015 08:54
Sample Type: TWSR
Location: TA-21/227
Room: interior

Instrument: Bertl 2010/143
Analysis: GrossAB
Phone: Page/Cell: 303-903-7277
e-mail: -

Date: 10/20/2015 14:12 Analyst: 151086

Results not adjusted for energy, attenuation, or yield unless noted.

Sample	Alpha	2*	Alpha	Alpha	Beta	2*	Beta	Beta
ID	Activity	sigma	MDA	MDA	Activity	sigma	MDA	MDA
#	(dpm)	(dpm)	(dpm)	Flag	(dpm)	(dpm)	(dpm)	Flag
Z 1	0.0	253.0	5.8		0.5	2.7	11.2	
2 2	0.0	258.5	6.1		0.1	2.6	10.9	

RP-2 HPAL:RSL SAMPLE SUBMITTAL FORM

Date/Time:10-1	5-2015 / 13:30		No. of Samples:	1	Priorit	:у [Emerge	ency
TA:21			Room: Interior					
Submitter:			z No:304	436	RP-1-0	0&D Sam	ple Track	ing
Signature:			3		1			
Contact Name:	L. Priester		Z No:2598	316	1111	29060	674	
Phone/Page/Email:								
		dditional info	rmation if panded		Commonts/PD	O PM/P No:		
Sample Type & Analysis NuCon Gross α/β LSC Isotopic (1,2) Leak Test (1) Source Std. (1) 1) Isotope(s):	Air Smear Filter (3) Liq	H-3 Air Filter (3)	Charcoal Nas	(4)	Comments/RP	Save Sar	mple	
2) Field Screen (dpm): 3) STC Type: None or list 4) Describe:	type		∐beta ⊠α/β ———		Reporting Unit		m/m3 □µCi/l	L □pCi/g
Any Samples with	n ≥ 20K dpm alpha, ≥	100K dpm	beta/gamma, or	≥ 400K dpm	tritium			
			SMEARS/LIQUID/	OTHER				
Sample ID 1	Date/Time 10-15-2015 / (0:30			Description SMEARS			
2								
3								
J								
4								
5							٦.	
4 5 CAM FILT	TER/AIR SAMPLES/CH	ARCOALS		ow Rate Units		ample Off] lpm	Run Time
5		ARCOALS Date	Flo Sample On Time	ow Rate Units		ample Off Time	Ipm Flow Rate	Run Time (hr)
5 CAM FILT Location 1			Sample On		S			
CAM FILT Location 1 2			Sample On		S			
CAM FILT Location 1 2 3			Sample On		S			
CAM FILT Location 1 2			Sample On		S			
1 2 3 4 5 6			Sample On		S			
4 5 CAM FILT Location 1 2 3 4 5 6 7 7			Sample On		S			
4 5 CAM FILT Location 1 2 3 4 5 6 7 8			Sample On		S			
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9			Sample On		S			
4 5 CAM FILT Location 1 2 3 4 5 6 7 8			Sample On	Flow Rate	S Date	Time		
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9			Sample On	Flow Rate	S	Time	Flow Rate	
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 6 7 8 9 10 N	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 6 7 8 9 10 N 1 2 3 4	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10 N 1 2 3 4 5 5 6 7 8 9 10 N 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10 N 1 2 3 4 5 6 6	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10 N 1 2 3 4 5 5 6 7 8 9 10 N 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10 N 1 2 3 4 5 6 6	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)
4 5 CAM FILT Location 1 2 3 4 5 6 7 8 9 10 N 1 2 3 4 5 6 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NASAL SMEAR		Sample On Time	Flow Rate	S Date S	Time	Flow Rate	(hr)

3/2013 Continuation

RP-2 HPAL:RSL SAMPLE SUBMITTAL FORM

						1			
Date/Time:	10-14-2	2015 / 14:00		No. of Samples: _	19	Pri	ority	Emerg	ency
TA:21				Room: Interio			جامات ج	Number	
Submitter:				Z No:3		RP-	1-D&D San	nnle Traci	cin =
Signature:		-	<u> </u>	2110.				пріє ттаск ІШІ ШШШ	ang
Contact Name:		1 Priester		7.1	59816				
		I Dutas	ter 505-500-7.		33010		29060	0673	
Phone/Page/Email: _									9
Sample Type & Ana	alysis (Ch	eck Box and prov H-3	ide additional in H-3)	Comments	/RPO RWP No:	:	
		Air Smear	Filt	er l	Nasal Other				
Gross α/β	luCon I	Filter (3)	Liquid (3) Charcoal S	mear (4)				
LSC				7 1 1 1			Save Sa	ample	
Isotopic (1,2)						4	Jave J	ample	
Leak Test (1)	H					1			
Source Std. (1)									
1) Isotope(s):	P	u, Am, U				1			
2) Field Screen (dpr	m):		🔲 alph	na 🗌 beta 🗵 o	./β		11.12.		
3) STC Type: None						Reporting	Units: μCi	om/m3 🏻 uCi	/I \square nCi/g
4) Describe:								p,epe.,	- Прелу В
Any Sample	s with ≥	20K dpm alph	na, ≥ 100K dp	m beta/gamma,		n tritium			
CompletD	- 0	Date/T	ima	SMEARS/LIQU	D/OTHER	Descript	tion		
Sample ID 1-19		10-14-201:				smea			
2									
3									
3									
3 4 5	A FU TE	A /AID CAMPIES	/cuancoass		Slave Data United			Пы	
3 4 5 CA		R/AIR SAMPLES	/CHARCOALS	Sample On	Flow Rate Units	s:	cfm Sample Off	☐ Ipm	Run Time
3 4 5 CA	M FILTER	R/AIR SAMPLES	/CHARCOALS		Flow Rate Units	S: Date		Ipm Flow Rate	Run Time (hr)
3 4 5 CA Lo		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3		t/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3 4 5 6		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3 4 5 6 7		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9		R/AIR SAMPLES		Sample On			Sample Off		
3 4 5 CA Lc 1 2 3 4 5 6 7			Date	Sample On	Flow Rate	Date	Sample Off Time		
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9		NASAL SME	Date	Sample On	Flow Rate	Date	Sample Off Time Special	Flow Rate	
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lo 1 2 3 4 5 6 7 8 9	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9 10	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lo 1 2 3 4 5 6 7 8 9 10	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9 10	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lc 1 2 3 4 5 6 7 8 9 10 1 2 3 4	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lo 1 2 3 4 5 6 7 8 9 10	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lo 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)
3 4 5 CA Lo 1 2 3 4 5 6 7 8 9 10	ocation	NASAL SME	Date	Sample On Time	Flow Rate	Date Routine	Sample Off Time Special	Flow Rate	(hr)

MARSAME Release Report for TA-21 Building 227 below-grade tanks and sumps (January 2016)

Prepared by:		Date:
	Jeff Whicker/Jessica Gillis, ENV-ES, Environmental	Health Physics
Approved by:		Date:
	Mark Thacker, PM-8, UI PM FOD and D&D	

Summary

ENV-ES finds that the materials associated with the TA-21 Building 227 below-grade tanks and the north and south sumps (see Figure 1) meet the criteria for unrestricted release to the public for recycle or as sanitary/commercial waste. These findings are consistent with the requirements of DOE Order 458.1 "Radiation Protection of the Public and the Environment" and LANL Policy 412 "Environmental Radiation Protection." Sampling and data analysis, as described in this report, were sufficient to meet measurement objectives under the Multi-Agency Radiation Survey and Assessment of Materials and Equipment (MARSAME) manual (2009).

Introduction

The TA-21 sewage treatment Facility (STF) processed sewage for buildings in TA-21. Initial characterization surveys for Buildings 227, 229, 387, and associated sumps were completed in May 2015 and the final MARSAME release survey was completed in October 2015. Based on the results of these surveys, ENV-ES found that the superstructure of Building 227 could be segregated from below grade structures and treated as uncontaminated industrial waste or recycled (concrete and metal). The superstructure was found to be uncontaminated and unconditionally released. Given the higher potential for contamination, an additional survey of the below grade structures, water, and sediment using MARSAME protocol was required prior to releasing these materials. This release report summarizes the findings for release of substructure materials including three tanks in Building 227 and two sumps. For all materials, waste management requirements must be met prior to final waste disposition.

Figure 1 Arial view of TA 21 Buildings 227, 229, and 387.

Rev 0, 1/22/2016 Page **1** of **19**

MARSAME Survey Description

Data quality objectives for transfer of items into the public domain are described in ENV-ES-TPP-001, RO (2015). These structures had inadequate process knowledge available to confirm a decision of "non-impacted" under MARSAME guidance. However, due to expected near-background levels of radiological contamination, these structures were classified as Class 3. Characterization surveys were conducted in May 2015, and the data quality and survey completeness were compared to MARSAME requirements. A final release survey plan was developed and approved by DOE in November 2015 (Attachment 1). Additional measurements were made in building 227 substructures and the north and south sumps, and all results are provided in this report (Attachment 2).

To ensure adequacy of survey coverage, ENV-ES uses the statistical software Visual Sample Plan (VSP) (Version 7, 2015). This software incorporates MARSAME requirements to generate a map of planned sampling locations to provide sufficient and representative data for a decision based on the estimated standard deviation of radiological measurements in the survey unit. Fundamental assumptions for this survey plan included the following:

- The data was not assumed to be normally distributed
- The null hypothesis (H₀) in the IFB case is that the radionuclide concentration in the survey unit is IFB. A Type I error (incorrectly rejecting the null hypothesis) means "failing" the survey unit or calling the material contaminated when in fact the material is IFB. Type I error was set at 5%.
- The alternative hypothesis (H₃) in the IFB case is that the radionuclide concentration in the survey unit is elevated above (distinguishable from) background. A Type II error (incorrectly failing to reject the null hypothesis) means "passing" the survey unit or calling the material IFB when in fact it contains elevated radionuclide concentration above background. Type II error was set at 10%.

In addition to surface surveys, residual water and sediment from the 227 sumps were analyzed using gamma spectrometry and liquid scintillation analysis.

Survey Quality Objectives

The number and placement of sampling locations in the characterization survey was compared to MARSAME requirements for final release. The statistical inputs used for this assessment and the sampling plans are presented in Attachment 1. In all cases, the combination of characterization and final release sampling provided an adequate number of data points and spatial distribution to make a statistically-based release decision.

Measurement Quality Objectives

The items included in this report were classified as Class 3 (minimal potential for contamination) consistent with MARSAME. Sampling and analysis protocol for these items was consistent with LANL policy and procedures (LANL P412, TPP 001, RP-1-DP-043). Direct measurements were made using a SHP380AB probe coupled with an Eberline E600 instrument. NUCON smears were used to collect removable samples and were counted using a Berthold 2010/143. This assessment confirms that the measurement quality objectives were met for the disposition of the materials.

Potential disposition pathways for this project included:

1) Release of metal and concrete for recycle using a release criterion of < Table 10.2 level in P412. With respect to the DOE moratorium suspension on metal recycling, all metal materials are considered radiologically unencumbered and are available for recycle.

Rev 0, 1/22/2016 Page **2** of **19**

- 2) Release of construction and demolition debris (all other material) for disposal at commercial/municipal landfills using a release criterion of indistinguishable from background.
- 3) Low Level Waste disposal for any material that is not indistinguishable from background.

The objectives of the measurements were to confirm, within the stated statistical confidence limits, that:

- 1) Measurements of total and removable surface radioactivity are below Table 10-2 values in LANL Policy 412 (P412), which are preapproved authorized limits for release for recycle; and/or
- 2) Potential residual radioactive contamination is below background levels (i.e. sample distribution is statistically indistinguishable from background distribution) for release to landfills.

All data met the Measurement Quality Objectives (MQO). Specifically:

- 1) Appropriate instrumentation and techniques were used for the measurements and the expected radionuclides;
- 2) Scanning surveys (10% coverage for MARSAME Class 3) were used to search for hot spots;
- 3) Instruments were calibrated, response checked and background measurements were within expected ranges; and
- 4) The minimum detectable concentrations of the measurements were calculated to be below the surface contamination values in Table 10-2 of P412.

Data Analysis

Naturally occurring radioactive material in building materials is not removable, so the results for *removable* alpha and beta counts were compared to the instrument minimum detectable activity (MDA).

For *direct* alpha and beta counts, results were compared to expected background counts on the surfaces of similar, uncontaminated building materials (as tabulated in Whicker et al 2015). ProUCL Version 4.0 was used to calculate summary statistics and 95% Upper Confidence Limits (UCLs) for the mean of the sample data.

Results

Raw data for the surveys and Laboratory results are provided in Attachment 2. Data summaries for buildings are provided in Tables 1 and 2. Each data value was compared with the appropriate release criteria. For example, recycled concrete was evaluated against Table 10-2 limits in P412. Metal for recycle and building debris slated for disposal at commercial landfills were evaluated against the Indistinguishable from Background (IFB) criteria.

Table 1. Summary statistics for contamination surveys of below-grade tanks in Building 227. Units are dpm/100 cm².

	Removable [dpn	n/100 cm^2]	Total [dpm/100	cm^2]
	Alpha	Beta	Alpha	Beta
mean	0.9	1.6	18.9	378.0
STD	1.1	2.4	11.6	84.2
maximum	3.9	6.8	42.0	568.0
MDA/95% UCL Bkg	MDA ~6	MDA ~11	95% UCL 43	1500
Limit	20	1000	100	5000

Conclusions from data for Building 227 below-grade tanks:

- No removable contamination. All results were <MDA
- All direct measurements on concrete were IFB and < Table 10.2 preapproved authorized limits

Rev 0, 1/22/2016 Page **3** of **19**

 Sediment and water analysis showed only naturally occurring radioactive material at regional levels and no detectable tritium.

Conclusion: Building materials from Building 227 substructure sumps are candidates for public release for the defined disposition pathway.

Table 2. Summary statistics for contamination surveys of north and south sumps. Units are dpm/100 cm².

	Removable [dp	m/100 cm^2]	Total [dpm/100) cm^2]	
	Alpha	Beta	Alpha	Beta	
mean	0.4	0.77	5.8	249.6	
STD	0.6	1.0	9.9	176.9	
maximum	1.3	3.2	30	551	
MDA/95% UCL Bkg	MDA ~6	MDA ~11	95% UCL 43	1500	
Limit	20	1000	100	5000	

Conclusions from data for north and south sumps:

- No removable contamination. All results were <MDA
- All direct measurements on concrete were IFB and < Table 10.2 preapproved authorized limits

Conclusion: Building materials from north and south sumps are candidates for public release for the defined disposition pathway.

Conclusions

ENV-ES has evaluated the available process knowledge, as well as the survey results provided in Attachments 1 and 2, and found that surveys were adequate to support conclusions of indistinguishable from background for construction/demolition debris and < preapproved authorized limits for recyclable materials. These materials are candidates for unrestricted release under DOE Order 458.1 for the defined disposition pathways.

References

Los Alamos National Laboratory (2014). Eberline E-600 with Various Detectors. LANL Procedure RP-1-DP-043.02.

Los Alamos National Laboratory (2014). Environmental Radiation Protection. LANL Policy 412, R1.

Los Alamos National Laboratory (2015). Data Quality Objectives for Measurement of Radioactivity in or on Items for Transfer into the Public Domain. LANL Technical Project Plan ENV-ES-TPP-001, R0.

MARSAME (Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual), (2009). NUREG-1575 (Supp. 1), EPA 402-R-09-001, DOE/HS-004.

VSP Development Team (20150. Visual Sample Plan: A tool for design and analysis of environmental sampling. Version 7.4. Pacific Northwest National Laboratory. Richland, WA. http://vsp.pnnl.gov

Whicker, J.J., Gillis, J., McNaughton, M., Ruedig, E. Measurements of alpha and beta radiation from uncontaminated surfaces of common building materials. Los Alamos National Laboratory Report LA-UR-28370; 2015.

Rev 0, 1/22/2016 Page **4** of **19**

Attachments and Appendices

Attachment 1: TA-21 Sewage Treatment Facility D&D MARSAME Final Release Survey Plan Structures: 21-227

Substructure, Sumps

Attachment 2: Results of surveys for Buildings 227 (superstructure), 229 and 387

Rev 0, 1/22/2016 Page **5** of **19**

Attachment 1

TA-21 Sewage Treatment Facility D&D MARSAME Final Release Survey Plan Structures: 21-0227 Substructure, Sumps Rev. 0, 11/17/2015

Prepared by:		_Date:
	Jeff Whicker, ENV-ES, Environmental Health Physics	
Reviewed by:		Date:
•	Jessica Gillis, ENV-ES, Environmental Health Physics	
Approved by:	•	Date:
•	Mark Thacker, PM-8, UI PM FOD and D&D	

Summary

The TA-21 Sewage Treatment Facility (STF) processed sewage for buildings in TA-21. The STF is no longer needed and is scheduled for decommissioning and demolition (D&D). Initial characterization surveys for Building 227 and associated sumps were completed in May 2015. The initial focus of the sampling was on the above grade superstructure. The scope of this sampling and analysis plan includes only the tanks/sumps below grade in Building 227 and additional sumps to the north and east. Given the higher potential for contamination, a standalone survey of the below grade structure, water, and sediment was required using MARSAME protocol prior to any releases of building debris to industrial landfills or for recycle. For all materials, waste management requirements need to be met.

A characterization survey of the building including some measurements below grade was completed in May 2015, and the results were used to develop this final MARSAME release survey plan. The characterization survey for below grade materials was not sufficient to meet MARSAME requirements and further surveys are required. The sampling plan for the below grade sumps is outlined in this document.

Rev 0, 1/22/2016 Page **6** of **19**

1. Purpose and Scope of the MARSAME Final Release Survey

- 1.1. There are three TA-21 structures (21-0227, 229 and 387) that needed to be characterized to support Decontamination & Demolition (D&D) of these structures. All structures within this plan are considered potentially radiologically impacted based on historical knowledge of operations at TA-21. Since the structures are still standing, the MARSSIM survey approach was utilized to perform characterization surveys of these structures. However, since these structures will eventually be demolished and the waste and any recyclable materials will be sent offsite for disposal, the MARSAME data analysis approach will be utilized to evaluate the waste debris and recyclable material for disposal path decisions, as appropriate. The focus of this plan is on the below-grade concrete walls and floor of the tanks in building 227 and associated sumps.
- 1.2. Per MARSSIM Section 2.4, there are six principal steps in the MARSSIM Radiation Survey and Site Investigation Process:
 - Site Identification
 - Historical Site Assessment (HSA)
 - Scoping Survey
 - Characterization Survey
 - Remedial Action Support Survey
 - Final Status Survey
- 1.3. The MARSSIM HSA information for these structures is contained is Section 2 below. Given the location and function of the STF, we determined these buildings to have potential to contain radiological contamination, and therefore scoping/characterization surveys were completed.
- 1.4. Once the characterization survey was completed, the characterization data was analyzed against the MARSAME guidance. Based on the characterization results, no remedial actions were identified, and these results were used to plan for the final status surveys for release.
- 1.5. Notes and Assumptions:
 - 1.5.1. This plan was prepared in accordance with P412, Environmental Radiation Protection, and developed using P412 Data Quality Objectives.
 - 1.5.2. The nominal release criteria for this D&D project are from Table 10-2 of P412 for surface contamination (see Section 4 of this plan). Further restrictions may be imposed by the Waste Management Coordinator.
 - 1.5.3. Waste disposition pathways for material from D&D projects are as follows:

Rev 0, 1/22/2016 Page **7** of **19**

- 1.5.3.1. Contaminated material that is known or suspected to exceed regulatory limits is to be disposed of as Low Level Waste (LLW).
- 1.5.3.2. Radiologically encumbered metal items (items within areas posted as radiological areas) fall under the metals moratorium and may not be released.
- 1.5.3.3. Unencumbered metals may be released for **reuse** within the DOE complex using the Table 10-2 criteria pending an ALARA evaluation.
- 1.5.3.4. Unencumbered metals may be released to the public for **recycle** using the Table 10-2 criteria pending an ALARA evaluation.
- 1.5.3.5. Concrete may be released for recycle using the Table 10-2 criteria pending an ALARA evaluation.
- 1.5.3.6. Other D&D debris may be released to landfill under NMED regulations using indistinguishable from background criteria.

2. Historical Site Assessment Information

- 2.1. The STF never had radiological operations and was never posted for radiological purposes. However, given that the liquids from TA-21 plutonium and tritium process buildings may have passed through the STF, and the these buildings are in the TA-21 air shed, the buildings associated with the STF are considered to be Class 3 materials, as defined under MARSAME (e.g., small potential for contamination, but at levels near background).
- 2.2. Table A-1 provides summary data for the characterization survey. Assessment of the surface contamination data in the characterization survey for the superstructure at the sewage treatment plant (blds 227, 229 and 387) showed no removable contamination and direct surveys (alpha and beta) consistent with background measurements of similar uncontaminated building materials. There was no detectable tritium in the smear surveys. Preliminary samples of residual liquids and sediment showed detectable levels of americium-241 uranium-234 and tritium that were likely within background ranges. These survey results combined with process knowledge confirm these substructures as Class 3 under MARSAME guidance.

3. Survey Units and Data Analysis

- 3.1. This plan is designed to provide sufficient information for D&D execution and disposition decisions. If surveyors encounter contamination or unexplained increases in standard deviation or measured concentrations during D&D, further mitigation, sampling, and data analysis may be required.
- 3.2. Building and room maps are to be used as rough estimates of the spatial layout of the buildings. Adjustments to the survey units and/or maps may be required based on building specifics for this survey and any additional surveys.

4. Nominal Release Criteria

4.1. Table 1. Nominal release criteria for surface contamination.

Rev 0, 1/22/2016 Page **8** of **19**

Table 1: Values from P412 Section 1021 Table 2-2 (value units are disintegrations per minute (dpm) per 100 cm ²)									
U-natural, U-235, U-238 and associated decay products (Removable)	1,000	dpm/100cm ²							
U-natural, U-235, U-238 and associated decay products (Total)	5,000	dpm/100cm ²							
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-125, I-129 (Removable)	20	dpm/100cm ²							
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-125, I-129 (Total)	100	dpm/100cm ²							
Th-natural, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133 (Removable)	200	dpm/100cm ²							
Th-natural, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133 (Total)	1,000	dpm/100cm ²							
β/γ emitters (Removable)	1,000	dpm/100cm ²							
β/γ emitters (Total)	5,000	dpm/100cm ²							
Tritium and Special Tritium Compounds	10,000	dpm/100cm ²							

4.3 Based on process knowledge of facility operations, sampling and data analysis for volumetric contamination is required for the sediment, water, and concrete in the substructure of the buildings. If evidence for volumetric contamination is encountered, volumetrically contaminated items may be released using a criterion of statistically indistinguishable from background, as compared to instrument background or measured background radioactivity in clean materials for NORM radionuclides.

5. General Survey Instructions

- 5.1 Verify characterization activities are on the applicable Plan-of-the-Day, as appropriate.
- 5.2 Perform a Pre-Evaluation Brief and/or Job Task Brief in accordance with P300.
- 5.3 Verify personnel have appropriate training for the applicable tasks they will be performing.
- 5.4 Comply with applicable Radiological Work Permit (RWP) requirements, if RWP is required.
- 5.5 Follow applicable Integrated Work Documents [IWD(s)], as necessary.

6. Survey-Specific Instructions

6.1 A general overview of the final survey plan requirements is provided in Table 2, and detailed locations for survey are for each of the buildings are provide in Figure A-1, with additional details in Appendix 1.

Rev 0, 1/22/2016 Page **9** of **19**

- 6.2 Follow P121, RP-1-DP-37 "Surveying for Fixed and Removable Contamination", and other applicable characterization and sampling procedures. Document all survey results on the appropriate survey form(s) and the survey map(s). All direct and removable measurement results are to be reported as dpm/100cm². Do not use no detectable activity or "NDA."
- 6.3 The number of direct and removable measurements is specified in the following Survey Unit and Survey Requirement tables for each survey unit. Survey point locations (both direct counts and smears) will be a combination of "Uniformly Distributed" and "Biased" locations determined by the Surveyors. Uniformly distributed points shall be spread across all survey unit surfaces in a uniform, even, systematic pattern (similar to a grid pattern). Survey point locations may be changed based on accessibility issues via consultation with Jeff Whicker or Jessica Gillis.
- 6.4 Collect and record direct measurement instrument background readings periodically during surveys (approximately 5 background measurements per survey unit). Identify and document background measurements on the survey form and maps with the survey unit number, "-BKG," and sequential background number (e.g. 1-BKG1, 1-BKG2, etc.). Collect background measurements on direct reading probes by pointing the probe into the air and away from any nearby surfaces.
- 6.5 Required Surveys include:
 - 6.5.1 Surface scan surveys using a SHP380AB (α / β) detector, listening for increased count rate areas.
 - 6.5.2 60 second scalar direct surveys using an SHP380AB (α / β).
 - 6.5.3 NUCON smears (counted for α and β/γ).
 - 6.5.4 Volume contamination surveys: gamma spectral analysis of sediment and tritium measurements of liquids collected in the sumps. Depending on these results, volume sampling of interior concrete wall in the settling tank (first tank in the line) might be required.
- 6.6 QA survey measurements are required for MARSAME Final Status Surveys.

 Duplicate measurements should be made at approximately 10 percent of the surveyed locations.
- 6.7 Scan percentages are specified in the following Survey Unit and Survey Requirement tables for each survey unit. For any areas of noticeably elevated count rate, a biased measurement (direct and smear) shall be collected and documented. When biased surveying is required, scan surveys should be used to decide locations of biased survey points, or the biased locations can be selected based on process knowledge. Denote biased surveys sequentially after the last systematic survey location. Biased measurement locations may include: high traffic areas such as room entrances, HVAC intakes and exhaust ducts, storage areas, areas of frequent personnel contact such as doors and door frames, horizontal surfaces such as lab counter tops and shelves, sinks,

Rev 0, 1/22/2016 Page **10** of **19**

- the openings to sink and floor drains; the tops of lights, beams, crane rails, structural beams, etc.
- On the survey forms, denote surface material (e.g., "concrete," "metal," etc.), as well as locations of biased surveys.
- 6.9 Use provided survey maps, or create scaled maps as necessary, to document the survey locations and results.
- 6.10 Smear survey results are to be reported in the form consistent with the results from HPAL. HPAL should be requested to report results as dpm/100cm² (not NDA). In consultation with HPAL, isotopic analysis can be performed on smears with high gross alpha/beta results if the radioisotope (or mixture) is unknown. Save all smears for possible future HPAL analysis.
- 6.11 Collect and maintain all characterization paperwork. Number each page of the survey unit packages using the format "XX of XX". Survey Unit packages should include survey forms, maps, HPAL smear results, and HPAL isotopic analysis (if required). Provide all completed paperwork to Jeff Whicker, Jessica Gillis, or Mark Thacker.

7. Surface Labeling Requirements

- 7.1 Denote survey unit location numbers on structure surfaces where measurements are obtained. Mark locations on using the survey unit designation plus the next sequential survey point location number. For example, for survey unit 21-5-2, location survey point number 5, mark the structure surface with the number 21-5-2-5.
- 7.2 The direct reading probe outline shall be drawn on the surface with a marker and a template to identify the exact surveyed location in the event a re-survey is necessary.
- 7.3 Denote on the survey map where the scan, direct, and smear surveys were performed. Scan area may be approximated by a highlighted/circled area in survey units that require less than 100% scanning. Record the general scan findings on the survey forms and/or maps.

8.0 Special Support and Safety Requirements

- 8.1 Walls, basement floors, sump bottoms, and ceilings/roofs require access via ladders, scaffolding, man-lifts, etc.
- 8.2 Survey technicians shall be trained for elevated work.
- 8.3 Pest control will likely be required in and around all structures.

9.0 Appendices

Appendix 1. Specific Sampling Locations for Final Status Survey Building 227-Substructure Tanks and External Sumps

Appendix 2. Statistical Summary Report for Determining Sampling Locations

Rev 0, 1/22/2016 Page **11** of **19**

Table 2. Summary of Final Status Survey for Substructure of Building 227, and associated sumps at the TA-21 Sewage Treatment Facility

Class 3 Areas

These survey units have the potential to contain, or have ever contained, some residual radioactivity greater than natural or fallout background levels. Individual measurements may exceed background levels, but are not expected to exceed the action levels.

Historical measurements and air sampling data indicate that contamination is unlikely. However, given that the liquids from TA-21 plutonium and tritium process buildings passed through the STP, and the these buildings are in the TA-21 air shed, the STF is considered to be class 3 area, as defined under MARSAME (e.g., small potential for contamination, but at levels near background).

Survey Area	Survey Unit	Description	Scan %	Direct Survey	Smears	Media	Class Justification
21-0227	Interior walls and floor	Sump walls and floor of settling, aeration and digester tanks	≤10%	~20 ~2 QA ~2 volume samples	~20 ~2 QA		Characterization surveys from the walls and roof confirmed very low potential for contamination.
21-North and South Sumps	Interior floors, wall and ceiling	North and South sumps external to Bld 227	≤10%	~20 ~2 QA ~2 volume samples	20 ~2 QA	Surfaces and volume	Characterization surveys from the interior walls and roof confirmed very low potential for contamination.
		Interior Spaces Total		~40 ~4 QA	~40 ~4QA		
			Volume	~4 Volume ~40	~40		
		Class 3 Total		~40 ~4 QA ~4 Volume	~40 ~4QA		

Rev 0, 11/13/15 Page **12** of **19**

Appendix 1. Specific Sampling Locations for Final Status Survey Building 227-Substructure Tanks and External Sumps

Parameters used to determine the number and placement of sample locations for direct and smear surveys for the substructure walls, floor, and ceilings in the north and south sumps are provided in Table A-1. The walls and floors were combined and treated as single decision areas for the settling, aeration, and digester tanks. The north and south sumps were combined and treated as a single decision area. Appendix 1 reports the details of the statistical analysis and the results. Locations can be adjusted in the field, if necessary, for safety or other practical matters. If sampling of floor in tanks is problematic due to standing water, then survey the floor after removal of the flooring and surfaces dry. If not feasible, sampling walls just above the waterline is acceptable. The selected sampling pattern was a triangular grid with a random start location.

Table A-1. Visual Sampling Plan (VSP) software inputs from the building 227 interior characterization survey:

Parameter	DCGL [dpm/100cm ²]-	Expected [dpm/100cm ²]	Standard Dev [dpm/100cm ²]
	Authorized Level	from characterization	from characterization
Removable Alpha	20	0.5	0.7
Direct Alpha	100	25	20
Removable Beta	1000	0.3	1.8
Direct Beta	5000	72	126

DCGL = Derived Concentration Guideline Level from MARSAME. This value is used as the limit to which measurements are compared. In this survey, DCGL values represent the preapproved surface contamination limits in P412.

Rev 0, 11/13/15 Page **13** of **19**

Maps of VSP-selected Sampling Locations

Figure A-1. Sampling locations with all three sumps combined into single decision area. Settling tank is on far right, aeration tank below middle, and digester tank is far left.

Rev 0, 11/13/15 Page **14** of **19**

Figure A-2. Sampling locations for south sump.

Rev 0, 11/13/15 Page **15** of **19**

Figure A-3. Sampling locations for north sump.

Rev 0, 11/13/15 Page **16** of **19**

Appendix 2: Statistical Summary Report for Determining Sampling Locations

Systematic sampling locations for comparing a median with a fixed threshold (nonparametric - MARSSIM)

Summary

This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

The following table summarizes the sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY OF SAMPLING DESIGN							
Primary Objective of Design	Compare a site mean or median to a fixed threshold						
Type of Sampling Design	Nonparametric						
Sample Placement (Location)	Systematic with a random start location						
in the Field							
Working (Null) Hypothesis	The median(mean) value at the site						
	is less than the threshold						
Formula for calculating	Sign Test - MARSSIM version						
number of sampling locations							
Grid pattern	Triangular						

Primary Sampling Objective

The primary purpose of sampling at this site is to compare a site median or mean value with a fixed threshold. The working hypothesis (or 'null' hypothesis) is that the median(mean) value at the site is less than the threshold. The alternative hypothesis is that the median(mean) value is equal to or exceeds the threshold. VSP calculates the number of samples required to reject the null hypothesis in favor of the alternative one, given a selected sampling approach and inputs to the associated equation.

Selected Sampling Approach

A nonparametric systematic sampling approach with a random start was used to determine the number of samples and to specify sampling locations. A nonparametric formula was chosen because the conceptual model and historical information (e.g., historical data from this site or a very similar site) indicate that typical parametric assumptions may not be true.

Both parametric and non-parametric equations rely on assumptions about the population. Typically, however, non-parametric equations require fewer assumptions and allow for more uncertainty about the statistical distribution of values at the site. The trade-off is that if the parametric assumptions are valid, the required number of samples is usually less than if a non-parametric equation was used.

Locating the sample points over a systematic grid with a random start ensures spatial coverage of the site. Statistical analyses of systematically collected data are valid if a random start to the grid is used. One disadvantage of systematically collected samples is that spatial variability or patterns may not be discovered if the grid spacing is large relative to the spatial patterns.

Number of Total Samples: Calculation Equation and Inputs

The equation used to calculate the number of samples is based on a Sign test (see PNNL 13450 for discussion). For this site, the null hypothesis is rejected in favor of the alternative one if the median(mean) is sufficiently larger than the threshold. The number of samples to collect is calculated so that if the inputs to the equation are true, the calculated number of samples will cause the null hypothesis to be rejected.

The formula used to calculate the number of samples is:

$$n = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{4(SignP - 0.5)^2}$$

where

where
$$SignP = \Phi\left(\frac{\Delta}{s_{total}}\right)$$

 $\Phi(z)$ is the cumulative standard normal distribution on (-\infty,z) (see PNNL-13450 for details),

is the number of samples,

is the estimated standard deviation of the measured values including analytical error, S_{total}

is the width of the gray region,

is the acceptable probability of incorrectly concluding the site median(mean) exceeds the threshold,

is the acceptable probability of incorrectly concluding the site median(mean) is less than the threshold,

is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1-\alpha}$ is 1- α , $Z_{1-\alpha}$

is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1-\beta}$ is 1- β . $Z_{1-\beta}$

Note: MARSSIM suggests that the number of samples should be increased by at least 20% to account for missing or unusable data and uncertainty in the calculated value of n. VSP allows a user-supplied percent overage as discussed in MARSSIM (EPA 2000, p. 5-33).

The values of these inputs that result in the calculated number of sampling locations are:

Analyte	na		Parameter	r			
Analyte	III.	S	Δ	α	β	Z_{1-a}^{b}	$Z_{1-\beta}$ ^c
alpha-Total Concrete	15	20 dpm/100 cm2	40 dpm/100 cm2	0.05	0.05	1.64485	1.64485
beta- Total Concrete	15	126 dpm/100 cm2	252 dpm/100 cm2	0.05	0.05	1.64485	1.64485
Alpha- Removable	15	1 dpm/100 cm2	2 dpm/100 cm2	0.05	0.05	1.64485	1.64485
Beta- Removable	15	2 dpm/100 cm2	4 dpm/100 cm2	0.05	0.05	1.64485	1.64485

^a The final number of samples has been increased by the MARSSIM Overage of 20%.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- the computed sign test statistic is normally distributed,
- the variance estimate, S², is reasonable and representative of the population being sampled, 2.
- 3. the population values are not spatially or temporally correlated, and
- the sampling locations will be selected probabilistically.

The first three assumptions will be assessed in a post data collection analysis. The last assumption is valid because the gridded sample locations were selected based on a random start.

Sensitivity Analysis

The sensitivity of the calculation of number of samples was explored by varying the standard deviation, upper bound of gray region (% of action level), beta (%), probability of mistakenly concluding that μ < action level and alpha (%), probability of mistakenly concluding that μ > action level. The following table shows the results of this analysis.

Number of Samples											
AL=1000	α=	=5	α =	:10	α =	=15					
AL=1000	s=4	s=2	s=4	s=2	s=4	s=2					
	β =5	15	14	11	11	10	10				
UBGR=110	β =10	11	11	9	9	8	8				
	β =15	10	10	8	8	6	6				
UBGR=120	$\beta = 5$	14	14	11	11	10	10				

^b This value is automatically calculated by VSP based upon the user defined value of α.

^c This value is automatically calculated by VSP based upon the user defined value of β.

	β =10	11	11	9	9	8	8
	β =15	10	10	8	8	6	6
	β =5	14	14	11	11	10	10
UBGR=130	β =10	11	11	9	9	8	8
	β =15	10	10	8	8	6	6

s = Standard Deviation

UBGR = Upper Bound of Gray Region (% of Action Level)

 β = Beta (%), Probability of mistakenly concluding that μ < action level

 α = Alpha (%), Probability of mistakenly concluding that μ > action level

AL = Action Level (Threshold)

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Because the primary objective for sampling for this site is to compare the site median(mean) value with a threshold value, the data will be assessed in this context. Assuming the data are adequate, at least one statistical test will be done to perform a comparison between the data and the threshold of interest. Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.2.

This design was last modified 10/30/2015 11:25:43 AM.

Software and documentation available at http://vsp.pnnl.gov

Software copyright (c) 2015 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.

Attachment 2

					C	on	tamination/Rad	iation	Surv	ey Re	eport	2015	5							
RWP N	UMB	ER:	N/A						Char	racteriza	tion of T	A-21-22	7 Sump	Tanks S	Survey R	eport		Survey Form Revision 0		
Survey Number	er:	Date/Time:				Item	Location		Alpha			Beta		Tritium	um Dose (mren					
TA21-2015-	00332	11/30/	′15 @ 1	1:00		#	BLDG 227 Sumps	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable +	Removable (dpm/100cm²)	Direct (dpm/100cm²)	Total (dpm/100cm²) Removable +	Removable (dpm/100cm²)	Contact beta/gamma	Contact neutron	30 cm beta/gamma	30 cm neutron	1 Meter beta/gamma	1 Meter neutron
Location: Surveyor:				1	Digester West Wall	0	27	27	0.8	387	387.8	N/A								
TA-21	-227	<u> </u>	G. Wind	der		2	South Wall	0	38	38	0	408	408							
Survey Type:		Equipme				3	East Wall	1.1	17	18.1	0	321	321							
Routine Material Release			4	Floor	1.2	10	22	0	410	410										
Pre-Job RWP Material Receipt			5	Floor	0.8	10	10.8	0	550	550										
Post-Job F	RWP	Vehicle	Release			6	Aeration West Wall	0	11	11	1.4	380	381.4							/
RMI		Vehicle	Receipt			7	South Wall	0	38	38	0	359	359						/	
☐ Drums		Characte	erization			8	East Wall	1.3	27	28.3	0	375	375			N				
Contamin	ation		Radiation	on		9	Floor	0	10	10	0	298	298							
						10	Floor	2.8	10	12.8	6.8	302	308.8							
				11	Floor	0	5	5	5.2	568	573.2						//			
				12	Floor	1.3	26	27.3	1.6	512	513.6						/			
				13	Settling West Wall	3.9	21	24.9	0	337	337					/	1			
						14	East Wall	0	5	5	3.6	452	455.3					/		
						15	North Wall	0	15	15	0	340	340					 		
						16	Floor	0	42	42	1.4	325	326.4					/		
						17	Floor	1.1	31	32.1	0	280	280					 / 		
Instrument	P/N #	Cal Due	Bkgd	MDA	units	18	Floor	2.7	10	12.7	5.8	350	355.8					/		
E600		4/9/2016	11.3	50	α dpm			0	10	10	0	295	295				 	/ 		
SHP 380 AB	12503 14822	5/28/2016	1666	439	-	19	QA for #3										 			
E600	14022	3/20/2010	1000	700	α dpm	20	QA for #9	1.3	15	16.3	6	310	316				 			
SHP 380 AB	N			[βdpm	21											 / 			
3030	N				α dpm	22		—									 / 			
3030		A			-	23		N									 /			
3030		A			βdpm	24						1				ļ .	/			
						25										 				
See attached d	ata sneet i	or other instrum	ient inforr	nation.		26										 				
						27			ļ	/						 				
						28		<u> </u>								$\vdash / -$				
						29		_								/			Α	
RCT Signature	:				_	30										<u>/</u>				
						31	/	1							/					
Supervisor:	Le	roy Priester / Bi	ret McLea	n	_	32					Α				/_					
						33														
Signature						34														
						35									/					
						36	/								V					

Contamination/Radiation Survey Report 2015 (Continuation)			
Survey Number:	Date/Time:	Comments:	
TA21-2015-00332	11/30/15 @ 11:00		
Location:	Surveyor:	Characterization of TA-21-227 Sump Tanks Survey Report	
TA-21-227	G. Winder		
		South Wall	
TA 21 227		South Wall	

Aeration Tank

Contamination/Radiation Survey Report 2015 TA-21 Sewage Treatment Plant North/South Sumps **RWP NUMBER:** N/A Survey Form Revision 0 **Dose Rate** Alpha Tritium Survey Number: Date/Time: Item Location (mrem/hr) Total (dpm/100cm² Total (dpm/100cm² Removable Direct Removable Removable Contact Contact 30 cm 30 cm 1 Meter 1 Meter TA21-2015-00355 12-17-2015 / 09:00 (dpm/100cm²) dpm/100cm (dpm/100cm² dpm/100cm² Surveyor: 0.0 0.0 N/A Location: 1 Ceiling 0.0 0.0 0.0 0.0 2 1.3 1.3 0.7 TA-21-STP North / South Sumps G. Winder Ceiling 0.0 0.7 0.0 Equipment 139.1 11.1 3 North Wall 1.1 10.0 2.1 137.0 Survey Type: 221.7 Routine Material Release 4 0.0 0.0 0.0 1.7 220.0 North Wall Pre-Job RWP Material Receipt 5.0 226.0 226.0 5 South Wall 0.0 5.0 0.0 Post-Job RWP Vehicle Release 6 0.0 20.0 20.0 112.0 112.5 South Wall 0.5 RMI Vehicle Receipt 0.0 449.0 0.0 0.0 0.0 449.0 East wall Drums MARSSIM Survey 0.0 497.0 8 East wall 0.0 0.0 0.0 497.0 Contamination Radiation 551.0 9 West Wall 0.0 0.0 0.0 0.0 551.0 512.0 0.0 512.0 10 West Wall 0.0 0.0 0.0 11 1.0 0.0 1.0 207.0 207.0 0.0 Ceiling 0.0 304.7 12 0.0 0.0 1.7 303.0 Ceiling 404.0 30.0 13 North Wall 0.0 30.0 0.0 404.0 1.2 11.2 2.5 152.5 Ν 10.0 150.0 North Wall 30.0 296.0 0.0 30.0 0.0 296.0 15 South Wall 0.0 10.0 10.0 3.2 182.0 185.2 16 South Wall 1.1 1.1 0.0 17 East wall 0.0 0.0 0.0 25% Surface scan completed with an E-600/380AB. 18 East wall 1.3 0.0 1.3 1.5 35.0 36.5 MDA Instrument P/N # Cal Due Bkgd units 0.0 0.0 0.0 0.0 334.0 334.0 19 West Wall E600 12457 5/5/2016 46.8 86 α dpm 20 0.0 0.0 0.0 1.5 376.0 377.5 West Wall SHP380 13799 10/2/2016 1095 359 21 Α E600 12457 5/5/2016 20 62 a dpm 22 SHP380 10/2/2016 13799 1296 389 βdpm 23 Ν a dpm 24 Α βdpm 25 See attached data sheets. 26 27 28 29 RCT Signature: 30 G. Winder 31 L. Priester / B. Mclean Supervisor: 32 33 Signature 34 35

Contamination/Radiation Survey Report 2015 (Continuation)			
Survey Number:	Date/Time:	Comments:	
TA21-2015-00355	12-17-2015 / 09:00		
Location:	Surveyor:	TA-21 Sewage Treatment Plant North/South Sumps	
TA-21-STP North / South Sumps	G. Winder		

TA-21 STP North & South sump

FILE: 15111001

Sample Description

Analysis Information Contact Information

Priority: Routine

Login Date: 11/10/2015 09:59 Instrument: BEGe-Low Name: PATRICIA LOZANO Sample Type: Other Analysis: Isotopic Phone: 505-500-7373 Location: TA-21/227 Date: 11/17/2015 11:22 Page/Cell: - e-mail: - Priority: Routine

Sample ID or Description: Sample #1

Login Comments: SAVE SAMPLES

Isotope	Activity	2*sigma	MDA
Name	(pCi/g)	(pCi/g)	(pCi/g)
Am-241	NDA	NDA	2.37E-01
U-235	NDA	NDA	3.15E-01
U-238	NDA	NDA	7.43E+00

FILE: 15111001

Sample Description

Analysis Information Contact Information

Priority: Routine

Login Date: 11/10/2015 09:59 Instrument: LOAX-2 Name: PATRICIA LOZANO Sample Type: Other Analysis: Isotopic Phone: 505-500-7373 Date: 11/17/2015 11:24 Page/Cell: Room: NA Analyst: 235960 Phone: 505-500-7373 Page/Cell: e-mail: -

Sample ID or Description: Sample 2a

Login Comments: SAVE SAMPLES

Isotope	Activity	2*sigma	MDA
Name	(pCi/g)	(pCi/g)	(pCi/g)
Am-241	NDA	NDA	5.73E-01
U-235	NDA	NDA	5.22E-01
U-238	NDA	NDA	4.49E+01

FILE: 15111001

Sample Description

Analysis Information Contact Information

Priority: Routine

Login Date: 11/10/2015 09:59 Instrument: LOAX-2 Name: PATRICIA LOZANO Sample Type: Other Analysis: Isotopic Phone: 505-500-7373 Location: TA-21/227 Date: 11/17/2015 11:25 Page/Cell: - Room: NA Analyst: 235960 GA e-mail: -

Analyst: 235960 &H

Sample ID or Description: Sample 2b

Login Comments: SAVE SAMPLES

Isotope	Activity	2*sigma	MDA
Name	(pCi/g)	(pCi/g)	(pCi/g)
Am-241	NDA	NDA	1.05E+00
U-235	NDA	NDA	9.61E-01
U-238	NDA	NDA	2.89E+01

FILE: 29164107

Sample Description Analysis Information Contact Information

Priority: Routine

Login Date: 11/03/2015 14:25 Instrument: TA03-TC3 Name: BRYAN BONSER
Sample Type: Liquid Analysis: Isotopic Phone: 505-500-2155
Location: TA-21/227 Date: 11/12/2015 14:39 Page/Cell: Room: N/A Analyst: 116870 Priority: Routine

Sample ID or Description: Sump Water #1

Analysis Comments: 3 mL aliquot. MDA at 99.8% CL.

 Isotope
 Activity
 2*sigma
 MDA

 Name
 (uCi/L)
 (%)
 (uCi/L)

 Alpha
 NDA
 NDA
 2.10E-03

 Beta<25keV</td>
 NDA
 NDA
 7.80E-03

 Beta>25keV
 NDA
 NDA
 3.00E-03

FILE: 29164107

Sample Description

Analysis Information Contact Information

Login Date: 11/03/2015 14:25 Instrument: TA03-TC3 Name: BRYAN BONSER
Sample Type: Liquid Analysis: Isotopic Phone: 505-500-2155
Location: TA-21/227 Date: 11/12/2015 14:40 Page/Cell: Room: N/A Analyst: 116870 Page/Cell: BBONSER@LANL.GOV

Analyst: 116870 MM

Priority: Routine

Sample ID or Description: Sump Water #2 Analysis Comments: 3 mL aliquot. MDA at 99.8% CL.

Isotope	Activity	2*sigma	MDA
Name	(uCi/L)	(%)	(uCi/L)
Alpha	NDA	NDA	2.10E-03
Beta<25keV	NDA	NDA	4.60E-03
Beta>25keV	NDA	NDA	3.00E-03